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1©We reflect on notions of positivity and square roots.
More precisely:

• In a good notions of positivity, it should be a theorem
that every positive thing has a square root!

• The square root must allow to recover the positive thing in an
easy way, making also manifest in that way that the positive thing
is positive. ({ facilitate proofs of positivity.)

• We prefer unique square roots.

• We wish to compose two positive things to get new ones.

To achieve this:

• We will allow for quite general square roots.

• It turns out that it is good to view positive things as maps.
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such that p(x) := ϕ(x)ϕ(x) becomes a probability density over R3.
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Note: Suppose z′ ∈ C such that z′z′ = λ > 0.
Then u := z′

z = eiα ∈ S1.
In fact, u : λ 7→ uλ is a unitary in B(C) that maps z to z′.
All square roots of λ ≥ 0 are unitarily equivalent in that sense.

Note: Positive numbers λ, µ ≥ 0 can be multiplied.
In fact, if z, w ∈ C are square roots of λ, µ, respectively,
then (zw)(zw) = (zz)(ww) = λµ,
so that λµ ≥ 0.
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Note: Suppose β′ ∈ B such that β′∗β′ = b.
Then β

′

β
=???. ({ polar decomposition.)

However, u : β 7→ β′ defines a unitary Ba(βB, β′B). (Hilbert modules!)
All square roots of b ≥ 0 are unitarily equivalent in that sense.

Note: Let b, c ≥ 0. Then bc ≥ 0 iff bc = cb.
However, if β∗β = b, γ∗γ = c, then γ∗β∗βγ = (βγ)∗(βγ) ≥ 0.

This square root depends on the choice (at least of γ)
and it is noncommutative.
Note: In order to compose in that way a fixed c with any b, we need to
know the whole map γ∗ • γ! ({ Hilbert bimodules!)
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In fact, if also (K, j) fulfills span j(S ) = K, then v becomes a unitary.

Also, compare positive numbers: S = {ω}, kω,ω := λ ≥ 0.

• Composition of PD-kernels is reflected by tensor products.

(lk)σ,σ
′
:= lσ,σ

′
k
σ,σ′. (Schur prod.) k { i : S → H, l { j : S → K

(lk) { (i⊗ j)(σ) := i(σ)⊗ j(σ) ∈ H⊗K. Note: span(i⊗ j)(S ) ( H⊗K!
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7©Note: (E, i) is a square root of k, that fulfills:

• k is easily computable in terms of (E, i).

• (H, i) is unique in a very specific sense.

In fact, if also (F, j) fulfills span j(S )B = F, then v becomes a unitary.

However:

• It does NOT help composing PD-kernels.

There is no reasonable tensor product of right Hilbert B–modules
that recovers what we did for the one-point set S = {ω}.

In fact, how could it?
Our composed square root βγ depends on the choice of γ!
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• Accardi and Koyzyrev [AK01]: Special case B(H) for S = {0,1}.
However, semigroups! (The technique of the four semigroups)

• Barreto, Bhat, Liebscher, and MS [BBLS04]: General case.
In particular, CPD-semigroups.

• Possibly Speicher [Spe98] (Habilitation thesis 1994)?
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A–B–correspondence E and a map i : S → E such that

〈i(σ), ai(σ′)〉 = Kσ,σ′(a)

and E = spanAi(S )B. Moreover, if j : S → F fulfills 〈 j(σ), j(σ′)〉 =
K
σ,σ′(a), then v : i(σ) 7→ j(σ) extends to a unique bilinear isometry

E → F.

Note: S = {ω} { CP-maps. (Do NOT use n–positive for all n!)
Kolmogorov { Paschke’s GNS-construction [Pas73].
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A × S is, clearly, PD. On its Kolmogorov decomposition (E, ĩ) check
that aĩ(a′, σ) := ĩ(aa′, σ) defines a left action of A on E. Put i(σ) :=
ĩ(1, σ).

2nd proof. On A⊗ S C ⊗ B define the B–valued sesquilinear map
〈

a ⊗ eσ ⊗ b, a′ ⊗ eσ′ ⊗ b′
〉

:= b∗Kσ,σ
′
(a∗a′)b′.

CPD is born to make that positive. Rest: Quotient by N and
completion, with i : σ 7→ 1 ⊗ eσ ⊗ 1 +N.

The first proof is “classical”:
Guess a PD-kernel, do Kolmogorov, show its algebraic properties.

The second proof is “modern”: Start with a bimodule, define the only
reasonable inner product that emerges from CPD. (The algebraic
properties are general theory of correspondences.)
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w := ζ � idG ∈ B(K, L).
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bilinear unitary.

• Tensor product shows that composition of CPD-kernels is CPD.

(L ◦ K)σ,σ
′
:= Lσ,σ

′ ◦ Kσ,σ′. (Schur product.)
K { i : S → E, L { j : S → F

(L ◦ K) { (i � j)(σ) := i(σ) � j(σ) ∈ E � F.
Here for AEB and BFC, the internal tensor product E � F is
the unique A–C–correspondence that is spanned by elementary
tensors x � y fulfilling
〈x � y, x′ � y′〉 = 〈y, 〈x, x′〉y′〉 and a(x � y) = (ax) � y.
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(xx∗ is positive in the C∗–algebra Ba(B ⊕ E).)

• Define the Hilbert Mn(B)–module En := ((E∗)n)∗. Check that
〈Xn, X′n〉 =

(〈xi, x′j〉
)

i j and (XnB)i =
∑

j x jb ji.

• Then
〈

∑

i xi ⊗ yi ,
∑

i xi ⊗ yi

〉

= 〈Xn ⊗ Yn, Xn ⊗ Yn〉 ≥ 0.



14©Note:

• A CPD-kernel K from A to B and a CPD-kernel L from B to C
can be composed to form a CPD-kernel L ◦ K from A to C.

• Viewing w ∈ C as map z 7→ zw on C
C–valued PD-kernels correspond 1-1 with CPD-kernel from C to C.
Schur product of PD-kernels=compositions of CPD-kernels.

• Viewing b ∈ B as map z 7→ zb from C to B
B–valued PD-kernels correspond 1-1 with CPD-kernel from C to B.
Usually, no composition! (Codomain and domain match only in the
C–valued case.)



15©Recall: K { (E, i), L { (F, j), then L ◦ K {

span{ai(σ) � j(σ)c : a ∈ A, c ∈ C, σ ∈ S }

with embedding i� j : σ 7→ i(σ)� j(σ). This is (usually much!) smaller
than

E � F = (spanAi(S )B) � (spanB j(S )C)

= span
{

ai(σ) � b j(σ′)c : a ∈ A; b ∈ B; c ∈ C;σ,σ′ ∈ S
}

.

So, E � F does not coincide but at least contains the GNS-
correspondence of L ◦ K.

The GNS-correspondences for K and L allow easily to compute
GNS-correspondence for L ◦ K.
Nothing like this is true for Stinespring constructions!



16©Recall: (For simplicity for CP-maps.)
T : A → B ⊂ B(G) { H = E �G, v = ξ � idG, ρ(a) = a � idG.
S : B → C ⊂ B(K) { L = F � K, w = ζ � idK, π(b) = b � idK.

By no means does the Stinespring representation ρ for T help to
construct the Stinespring representation for S ◦ T !
(One needs to “tensor” E with the representation space L = F �G of
the Stinespring representation π for S , not with G!)

The GNS-correspondences E and F, on the other hand, are
universal ! (For each CP-map they need to be computed only once.)
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construct the Stinespring representation for S ◦ T !
(One needs to “tensor” E with the representation space L = F �G of
the Stinespring representation π for S , not with G!)

The GNS-correspondences E and F, on the other hand, are
universal ! (For each CP-map they need to be computed only once.)

Doing Stinespring representations for the individual members of a
CP-semigroup on B ⊂ B(G), is like considering a 2 × 2–system
of complex linear equations as a real 4 × 4–system (ignoring all
the structure hidden in the fact that certain 2 × 2–submatrices are
very special) and applying the Gauß algorithm to the 4× 4–system
instead of trivially resolving the 2× 2–system by hand.



17©T =
(

Tt
)

t≥0 a CPD-semigroup over S on B 3 1.
Then the GNS-correspondences Et of the Tt fulfill Es � Et ⊃ Es+t, so

(Esn
mn
� . . . � Esn

1
) � . . . � (Es1

m1
� . . . � Es1

1
) ⊃ Esn

mn+...+sn
1
� . . . � Es1

m1
+...+s1

1

Fix t > 0, { inductive limit over t = (tn, . . . , t1) ∈ (0,∞)n with
tn + . . . + t1 = t. For Et = lim indt Et ⊃ Et

Es � Et ⊃ Es+t becomes equality Es � Et = Es+t,

so E� =
(

Et
)

t∈R+ is a product system. The ξσt := it(σ) ∈ Et ⊂ Et fulfill
ξσs � ξσt = ξσs+t that is, for each σ ∈ S the family ξσ� =

(

ξσt
)

t≥0 is a unit,
such that 〈ξσt , •ξσ

′
t 〉 = T

σ,σ′
t for all σ,σ′ ∈ S , and the set {ξσ� : σ ∈ S }

of units generates E� as a product system. We see:

The square root of a CPD-semigroup (in particular, of a CP-
semigroup) is a product system with generating set of units; Bhat
and MS [BS00].



18©Other examples

• The product system of a PD-semigroup consists of symmetric Fock
spaces. Applications:
Classical Lévy processes (Parthasarathy and Schmidt [PS72].)
Quantum Lévy processes (Schürmann, MS, and Volkwardt
[SSV07].)

• The product system of uniformly continuous normal CPD-
semigroups on von Neumann algebras consists of time ordered
Fock modules (Barreto, Bhat, Liebscher, and MS [BBLS04]).
For C∗–algebras this may fail (Bhat, Liebscher, and MS [BLS10])!

• The Markov semigroups that admit dilations by cocycle perturbations
of “noises” are precisely the “spatial” Markov semigroups (MS
[Ske09a]). Proof: Via “spatial” product systems (MS [Ske06]
(preprint 2001))!



19©CP-semigroups on Ba(E)

Let ϑ be a semigroup of (unital, for simplicity) endomorphisms ϑt of B.
Then Bt := B with b.xt := ϑt(b)xt is its GNS-system with unit

(

1
)

t∈R+.

It is not a good idea to tensor with G when B ⊂ B(G). (Unless vN-alg.)
This changes when B = B(G) — or better B = Ba(E).
But only, if we tensor “from both sides”!

General: T : Ba(EB)→ Ba(FC) and S : Ba(FC)→ Ba(GD) CP-maps.
Their GNS-correspondences E and F.
Require spanK(E)E = E and spanK(F)F = F (strictness!). Then

(E∗ � E � F) � (F∗ � F �G) = E∗ � E � (F � F∗) � F �G

= E∗ � E �K(F) � F �G = E∗ � (E � F) �G.

So “sandwiching” between the representation modules (or spaces)
preserves tensor products! ({ Morita equivalence.)



20©Applications:

• ϑ a strict E0–semigroup on Ba(E) with GNS-systems
(

Ba(E)t
)

t∈R+.
{ Et := E∗ �Ba(E)t � E = E∗ �t E is product system via

(x∗ �s x′) � (y∗ �t y
′) 7−→ x∗ �s+t ϑt(x′y∗)y′.

(With “unit vector” MS [Ske02]. General [Ske09b] (preprint 2004).

• Special case: E a Hilbert spaces gives Bhat’s construction [Bha96]
of the (anti-)Arveson system [Arv89] of ϑ. (“Reverse” difficult!)

• E� =
(

Et
)

t∈R+ the GNS-system of a strict CP-semigroup T on Ba(E).
Then Et := E∗ � Et � E gives a product system E� =

(

Et
)

t∈R+ of
B–correspondences.

• Special case: E a Hilbert spaces gives Bhat’s Arveson system of T
[Bha96] without dilating T first to an endomorphism semigroup.



21©Only briefly: Positivity in ∗–algebras

• For instance: b in a pre-C∗–algebra is positive when positive in B.
b has a square root β ∈ B.

• For instance: b ∈ La(G) (G a pre-Hilbert space) is positive if
〈g, bg〉 ≥ 0 for every g ∈ G.
By an application of Friedrich’s theorem, b ∈ B has a square root
β ∈ La(G,G′) where G ⊂ G′ ⊂ G).

• New: Let B be a unital ∗–algebra and S a set of positive linear
functionals on B.
b ∈ B is S–positive if ϕ(c∗bc) ≥ 0 for all ϕ ∈ S and c ∈ B.
B is S–separated if ϕ(cbc′) = 0∀ϕ ∈ S; c, c′ ∈ B implies b = 0.
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Example: Let B = C〈x〉. Let Z ⊂ C. Put S = {ϕw : p 7→ p(w), w ∈ Z}.

• Z = R or Z = S1. Then p ≥ 0⇐⇒ ∃q ∈ B : qq = p.

• Z = C. Then p ≥ 0 =⇒ p = 0. (Liouville.)

• Z ⊂ C compact and Z\∂Z , ∅. Then B ⊂ C(Z) = B
and p ≥ 0⇐⇒ ∃ f ∈ C(Z) : f f = p.
For instance, Z = [−1,0], p = −x
{ p = f f ≥ 0 where f =

√
−x ∈ C[−1,0].



23© DenotebyGthedirectsumoftheGNS-pre-Hilbertspaces
ofallϕ∈S.IdentifyB⊂La(G).

1Theorem.LetAbeaunital∗–algebra.LetK:S×S→L(A,B)
beakerneloverSfromAtoB.IfKisCPDinthesensethat

∑

i,j

b∗
iK

(σi,σj)
(a∗

iaj)bj

isS–positiveforallfinitechoices,thenthereexistsapre-Hilbert
spaceHwithaleftactionofA,andamapi:S→La(G,H)such
that

K
σ,σ′

(a)=i(σ)∗ai(σ′)

forallσ,σ′∈Sanda∈A.
Wereferto(spanAi(S)B,i)astheKolmogorovdecompositionofK.
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[SSV07] M. Schürmann, M. Skeide, and S. Volkwardt,



28©
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