Hilbert Modules-Square Roots of Positive Maps

Michael Skeide

Bangalore, August, 2010

We reflect on notions of positivity and square roots. More precisely:

- In a good notions of positivity, it should be a theorem that every positive thing has a square root!
- The square root must allow to recover the positive thing in an easy way, making also manifest in that way that the positive thing is positive. (\sim facilitate proofs of positivity.)
- We prefer unique square roots.
- We wish to compose two positive things to get new ones.

To achieve this:

- We will allow for quite general square roots.
- It turns out that it is good to view positive things as maps.

Example. $\lambda \geq 0 \sim$ square root $z \in \mathbb{C}$ such that $\bar{z} z=\lambda$.

Example. $\lambda \geq 0 \sim$ square root $z \in \mathbb{C}$ such that $\bar{z} z=\lambda$.

Note: Complex numbers are excellent square roots of positive numbers!
(Think of the richness of wave functions $x \mapsto \varphi(x) \in \mathbb{C}$ in QM such that $p(x):=\bar{\varphi}(x) \varphi(x)$ becomes a probability density over \mathbb{R}^{3}. Volkmar: What about complex square roots of RN-derivatives?)

Example. $\lambda \geq 0 \leadsto$ square root $z \in \mathbb{C}$ such that $\bar{z} z=\lambda$.

Note: Complex numbers are excellent square roots of positive numbers!
(Think of the richness of wave functions $x \mapsto \varphi(x) \in \mathbb{C}$ in QM such that $p(x):=\bar{\varphi}(x) \varphi(x)$ becomes a probability density over \mathbb{R}^{3}. Volkmar: What about complex square roots of RN-derivatives?)

Note: Suppose $z^{\prime} \in \mathbb{C}$ such that $\overline{z^{\prime}} z^{\prime}=\lambda>0$.
Then $u:=\frac{z^{\prime}}{z}=e^{i \alpha} \in \mathbb{S}^{1}$.
In fact, $u: \lambda \mapsto u \lambda$ is a unitary in $\mathcal{B}(\mathbb{C})$ that maps z to z^{\prime}.
All square roots of $\lambda \geq 0$ are unitarily equivalent in that sense.

Example. $\lambda \geq 0 \leadsto$ square root $z \in \mathbb{C}$ such that $\bar{z} z=\lambda$.

Note: Complex numbers are excellent square roots of positive numbers!
(Think of the richness of wave functions $x \mapsto \varphi(x) \in \mathbb{C}$ in QM such that $p(x):=\bar{\varphi}(x) \varphi(x)$ becomes a probability density over \mathbb{R}^{3}. Volkmar: What about complex square roots of RN-derivatives?)

Note: Suppose $z^{\prime} \in \mathbb{C}$ such that $\overline{z^{\prime}} z^{\prime}=\lambda>0$.
Then $u:=\frac{z^{\prime}}{z}=e^{i \alpha} \in \mathbb{S}^{1}$.
In fact, $u: \lambda \mapsto u \lambda$ is a unitary in $\mathcal{B}(\mathbb{C})$ that maps z to z^{\prime}.
All square roots of $\lambda \geq 0$ are unitarily equivalent in that sense.
Note: Positive numbers $\lambda, \mu \geq 0$ can be multiplied.
In fact, if $z, w \in \mathbb{C}$ are square roots of λ, μ, respectively,
then $\overline{(z w)}(z w)=(\bar{z} z)(\bar{w} w)=\lambda \mu$,
so that $\lambda \mu \geq 0$.

Example. \mathcal{B} a C^{*}-algebra, $b \in \mathcal{B}$. Then

$b \geq 0: \Longleftrightarrow \exists \beta \in \mathcal{B}$ such that $\beta^{*} \beta=b$.

Example. \mathcal{B} a C^{*}-algebra, $b \in \mathcal{B}$. Then
$b \geq 0: \Longleftrightarrow \exists \beta \in \mathcal{B}$ such that $\beta^{*} \beta=b$.
Note: Suppose $\beta^{\prime} \in \mathcal{B}$ such that $\beta^{* *} \beta^{\prime}=b$. Then $\frac{\beta^{\prime}}{\beta}=$???. $\quad(\sim$ polar decomposition.)

Example. \mathcal{B} a C^{*}-algebra, $b \in \mathcal{B}$. Then
$b \geq 0: \Longleftrightarrow \exists \beta \in \mathcal{B}$ such that $\beta^{*} \beta=b$.
Note: Suppose $\beta^{\prime} \in \mathcal{B}$ such that $\beta^{* *} \beta^{\prime}=b$. Then $\frac{\beta^{\prime}}{\beta}=$???. $\quad(\sim$ polar decomposition.) However, $u: \beta \mapsto \beta^{\prime}$ defines a unitary $\mathcal{B}^{a}\left(\overline{\beta \mathcal{B}}, \overline{\beta^{\prime} \mathcal{B}}\right)$. (Hilbert modules!) All square roots of $b \geq 0$ are unitarily equivalent in that sense.

Example. \mathcal{B} a C^{*}-algebra, $b \in \mathcal{B}$. Then
$b \geq 0: \Longleftrightarrow \exists \beta \in \mathcal{B}$ such that $\beta^{*} \beta=b$.
Note: Suppose $\beta^{\prime} \in \mathcal{B}$ such that $\beta^{* *} \beta^{\prime}=b$. Then $\frac{\beta^{\prime}}{\beta}=? ? ? . \quad(\sim$ polar decomposition.)
However, $u: \beta \mapsto \beta^{\prime}$ defines a unitary $\mathcal{B}^{a}\left(\overline{\beta \mathcal{B}}, \overline{\beta^{\prime} \mathcal{B}}\right)$. (Hilbert modules!) All square roots of $b \geq 0$ are unitarily equivalent in that sense.

Note: Let $b, c \geq 0$. Then $b c \geq 0$ iff $b c=c b$.

Example. \mathcal{B} a C^{*}-algebra, $b \in \mathcal{B}$. Then
$b \geq 0: \Longleftrightarrow \exists \beta \in \mathcal{B}$ such that $\beta^{*} \beta=b$.
Note: Suppose $\beta^{\prime} \in \mathcal{B}$ such that $\beta^{* *} \beta^{\prime}=b$.
Then $\frac{\beta^{\prime}}{\beta}=? ? ? . \quad(\sim$ polar decomposition.)
However, $u: \beta \mapsto \beta^{\prime}$ defines a unitary $\mathcal{B}^{a}\left(\overline{\beta \mathcal{B}}, \overline{\beta^{\prime} \mathcal{B}}\right)$. (Hilbert modules!) All square roots of $b \geq 0$ are unitarily equivalent in that sense.

Note: Let $b, c \geq 0$. Then $b c \geq 0$ iff $b c=c b$.
However, if $\beta^{*} \beta=b, \gamma^{*} \gamma=c$, then $\gamma^{*} \beta^{*} \beta \gamma=(\beta \gamma)^{*}(\beta \gamma) \geq 0$.

Example. \mathcal{B} a C^{*}-algebra, $b \in \mathcal{B}$. Then
$b \geq 0: \Longleftrightarrow \exists \beta \in \mathcal{B}$ such that $\beta^{*} \beta=b$.
Note: Suppose $\beta^{\prime} \in \mathcal{B}$ such that $\beta^{* *} \beta^{\prime}=b$.
Then $\frac{\beta^{\prime}}{\beta}=$???. $\quad(\sim$ polar decomposition.)
However, $u: \beta \mapsto \beta^{\prime}$ defines a unitary $\mathcal{B}^{a}\left(\overline{\beta \mathcal{B}}, \overline{\beta^{\prime} \mathcal{B}}\right)$. (Hilbert modules!) All square roots of $b \geq 0$ are unitarily equivalent in that sense.

Note: Let $b, c \geq 0$. Then $b c \geq 0$ iff $b c=c b$.
However, if $\beta^{*} \beta=b, \gamma^{*} \gamma=c$, then $\gamma^{*} \beta^{*} \beta \gamma=(\beta \gamma)^{*}(\beta \gamma) \geq 0$.
This square root depends on the choice (at least of γ) and it is noncommutative.

Example. \mathcal{B} a C^{*}-algebra, $b \in \mathcal{B}$. Then
$b \geq 0: \Longleftrightarrow \exists \beta \in \mathcal{B}$ such that $\beta^{*} \beta=b$.
Note: Suppose $\beta^{\prime} \in \mathcal{B}$ such that $\beta^{\prime *} \beta^{\prime}=b$.
Then $\frac{\beta^{\prime}}{\beta}=$???. $\quad(\sim$ polar decomposition.)
However, $u: \beta \mapsto \beta^{\prime}$ defines a unitary $\mathcal{B}^{a}\left(\overline{\beta \mathcal{B}}, \overline{\beta^{\prime} \mathcal{B}}\right)$. (Hilbert modules!) All square roots of $b \geq 0$ are unitarily equivalent in that sense.

Note: Let $b, c \geq 0$. Then $b c \geq 0$ iff $b c=c b$.
However, if $\beta^{*} \beta=b, \gamma^{*} \gamma=c$, then $\gamma^{*} \beta^{*} \beta \gamma=(\beta \gamma)^{*}(\beta \gamma) \geq 0$.
This square root depends on the choice (at least of γ) and it is noncommutative. Note: In order to compose in that way a fixed c with any b, we need to know the whole map $\gamma^{*} \bullet \gamma!\quad(\sim$ Hilbert bimodules!)

Example. A kernel $\mathfrak{£}: S \times S \rightarrow \mathbb{C}$ over a set S is positive definite (4)
if $\quad \sum_{i, j} \bar{z}_{i} \mathfrak{E}^{\sigma_{i}, \sigma_{j}} z_{j} \geq 0 \quad$ for all finite choices of $\sigma_{i} \in S$ and $z_{i} \in \mathbb{C}$.

Example. A kernel $\mathfrak{f}: S \times S \rightarrow \mathbb{C}$ over a set S is positive definite(4) if $\quad \sum_{i, j} \bar{z}_{i} \mathfrak{E}^{\sigma_{i}, \sigma_{j}} z_{j} \geq 0 \quad$ for all finite choices of $\sigma_{i} \in S$ and $z_{i} \in \mathbb{C}$.

Theorem. (Kolmogorov decomposition.) If \mathfrak{E} is \mathbb{C}-valued PDkernel over S, then there exist a Hilbert space H and a map
$i: S \rightarrow H$ such that

$$
\left\langle i(\sigma), i\left(\sigma^{\prime}\right)\right\rangle=\mathfrak{e}^{\sigma, \sigma^{\prime}}
$$

and $H=\overline{\operatorname{span}} i(S)$.

Example. A kernel $\mathfrak{f}: S \times S \rightarrow \mathbb{C}$ over a set S is positive definite(4) if $\quad \sum_{i, j} \bar{z}_{i} \mathfrak{F}^{\sigma_{i}, \sigma_{j}} z_{j} \geq 0 \quad$ for all finite choices of $\sigma_{i} \in S$ and $z_{i} \in \mathbb{C}$.

Theorem. (Kolmogorov decomposition.) If \mathfrak{f} is \mathbb{C}-valued PDkernel over S, then there exist a Hilbert space H and a map $i: S \rightarrow H$ such that

$$
\left\langle i(\sigma), i\left(\sigma^{\prime}\right)\right\rangle=\mathfrak{e}^{\sigma, \sigma^{\prime}}
$$

and $H=\overline{\operatorname{span}} i(S)$. Moreover, if $j: S \rightarrow K$ fulfills $\left\langle j(\sigma), j\left(\sigma^{\prime}\right)\right\rangle=\mathfrak{F}^{\sigma, \sigma^{\prime}}$, then $v: i(\sigma) \mapsto j(\sigma)$ extends to a unique isometry $H \rightarrow K$.

Example. A kernel $\mathfrak{f}: S \times S \rightarrow \mathbb{C}$ over a set S is positive definite(4) if $\quad \sum_{i, j} \bar{z}_{i} \mathfrak{E}^{\sigma_{i}, \sigma_{j}} z_{j} \geq 0 \quad$ for all finite choices of $\sigma_{i} \in S$ and $z_{i} \in \mathbb{C}$.

Theorem. (Kolmogorov decomposition.) If \mathfrak{f} is \mathbb{C}-valued PDkernel over S, then there exist a Hilbert space H and a map $i: S \rightarrow H$ such that

$$
\left\langle i(\sigma), i\left(\sigma^{\prime}\right)\right\rangle=\mathfrak{t}^{\sigma, \sigma^{\prime}}
$$

and $H=\overline{\operatorname{span}} i(S)$. Moreover, if $j: S \rightarrow K$ fulfills $\left\langle j(\sigma), j\left(\sigma^{\prime}\right)\right\rangle=\mathfrak{f}^{\mathfrak{\sigma}, \sigma^{\prime}}$, then $v: i(\sigma) \mapsto j(\sigma)$ extends to a unique isometry $H \rightarrow K$.

Proof. On $S_{\mathbb{C}}:=\bigoplus_{\sigma \in S} \mathbb{C}=\left\{\left(z_{\sigma}\right)_{\sigma \in S} \mid \#\left\{\sigma: z_{\sigma} \neq 0\right\}<\infty\right\}$ define the sesquilinear form

$$
\left\langle\left(z_{\sigma}\right)_{\sigma \in S},\left(z_{\sigma}^{\prime}\right)_{\sigma \in S}\right\rangle:=\sum_{\sigma, \sigma^{\prime} \in S} \bar{z}_{\sigma} \mathfrak{f}^{\sigma, \sigma^{\prime}} z_{\sigma^{\prime}}^{\prime}
$$

Example. A kernel $\mathfrak{f}: S \times S \rightarrow \mathbb{C}$ over a set S is positive definite(4) if $\quad \sum_{i, j} \bar{z}_{i} \mathfrak{E}^{\sigma_{i}, \sigma_{j}} z_{j} \geq 0 \quad$ for all finite choices of $\sigma_{i} \in S$ and $z_{i} \in \mathbb{C}$.

Theorem. (Kolmogorov decomposition.) If \mathfrak{f} is \mathbb{C}-valued PDkernel over S, then there exist a Hilbert space H and a map $i: S \rightarrow H$ such that

$$
\left\langle i(\sigma), i\left(\sigma^{\prime}\right)\right\rangle=\mathfrak{t}^{\sigma, \sigma^{\prime}}
$$

and $H=\overline{\operatorname{span}} i(S)$. Moreover, if $j: S \rightarrow K$ fulfills $\left\langle j(\sigma), j\left(\sigma^{\prime}\right)\right\rangle=\mathfrak{f}^{\mathfrak{\sigma}, \sigma^{\prime}}$, then $v: i(\sigma) \mapsto j(\sigma)$ extends to a unique isometry $H \rightarrow K$.

Proof. On $S_{\mathbb{C}}:=\bigoplus_{\sigma \in S} \mathbb{C}=\left\{\left(z_{\sigma}\right)_{\sigma \in S} \mid \#\left\{\sigma: z_{\sigma} \neq 0\right\}<\infty\right\}$ define the sesquilinear form

$$
\left\langle\left(z_{\sigma}\right)_{\sigma \in S},\left(z_{\sigma}^{\prime}\right)_{\sigma \in S}\right\rangle:=\sum_{\sigma, \sigma^{\prime} \in S} \bar{z}_{\sigma} \mathfrak{f}^{\sigma, \sigma^{\prime}} z_{\sigma^{\prime}}^{\prime}
$$

PD is born to make that positive.

Example. A kernel $\mathfrak{f}: S \times S \rightarrow \mathbb{C}$ over a set S is positive definite (4)
if $\quad \sum_{i, j} \bar{z}_{i} \xi^{\sigma_{i}, \sigma_{j}} z_{j} \geq 0$ for all finite choices of $\sigma_{i} \in S$ and $z_{i} \in \mathbb{C}$.

Theorem. (Kolmogorov decomposition.) If \mathfrak{f} is \mathbb{C}-valued PDkernel over S, then there exist a Hilbert space H and a map $i: S \rightarrow H$ such that

$$
\left\langle i(\sigma), i\left(\sigma^{\prime}\right)\right\rangle=\mathfrak{e}^{\sigma, \sigma^{\prime}}
$$

and $H=\overline{\operatorname{span}} i(S)$. Moreover, if $j: S \rightarrow K$ fulfills $\left\langle j(\sigma), j\left(\sigma^{\prime}\right)\right\rangle=\mathfrak{\ddagger} \sigma, \sigma^{\prime}$, then $v: i(\sigma) \mapsto j(\sigma)$ extends to a unique isometry $H \rightarrow K$.

Proof. On $S_{\mathbb{C}}:=\bigoplus_{\sigma \in S} \mathbb{C}=\left\{\left(z_{\sigma}\right)_{\sigma \in S} \mid \#\left\{\sigma: z_{\sigma} \neq 0\right\}<\infty\right\}$ define the sesquilinear form

$$
\left\langle\left(z_{\sigma}\right)_{\sigma \in S},\left(z_{\sigma}^{\prime}\right)_{\sigma \in S}\right\rangle:=\sum_{\sigma, \sigma^{\prime} \in S} \bar{z}_{\sigma} \mathfrak{E}^{\sigma, \sigma^{\prime}} z_{\sigma^{\prime}}^{\prime}
$$

PD is born to make that positive. Rest: Quotient by \mathcal{N} and completion, with $i: \sigma \mapsto e_{\sigma}+\mathcal{N}$ where $e_{\sigma}:=\left(\delta_{\sigma, \sigma^{\prime}}\right)_{\sigma^{\prime} \in S}$.

Note: (H, i) is an excellent square root of f !

Note: (H, i) is an excellent square root of $£!$

- \mathfrak{f} is easily computable in terms of (H, i).

Try to do the same with the collection of numbers $\sqrt{\sum_{i, j=1}^{n} \bar{z}_{i} \overbrace{i} \sigma_{i}, \sigma_{j} z_{j}}$ or with the collection of matrices $\sqrt{\left(\mathfrak{f}^{\left.\sigma_{i}, \sigma_{j}\right)_{i, j=1, \ldots, n}} \text {. }\right.}$

Note: (H, i) is an excellent square root of $£!$

- \mathfrak{f} is easily computable in terms of (H, i).

Try to do the same with the collection of numbers $\sqrt{\sum_{i, j=1}^{n} \bar{z}_{i} \in{ }^{i} \sigma_{i}, \sigma_{j} z_{j}}$ or with the collection of matrices $\sqrt{\left(\mathfrak{f}^{\left.\sigma_{i}, \sigma_{j}\right)_{i, j=1, \ldots, n}} \text {. }\right.}$

- (H, i) is unique in a very specific sense.

In fact, if also (K, j) fulfills $\overline{\text { span }} j(S)=K$, then v becomes a unitary. Also, compare positive numbers: $S=\{\omega\}, \mathfrak{f}^{\omega, \omega}:=\lambda \geq 0$.

Note: (H, i) is an excellent square root of \ddagger !

- \mathfrak{f} is easily computable in terms of (H, i).

Try to do the same with the collection of numbers $\sqrt{\sum_{i, j=1}^{n} \bar{z}_{i} \sigma_{i,} \sigma_{i,} \sigma_{j z_{j}}}$ or with the collection of matrices $\sqrt{\left({ }_{\left(\sigma^{\sigma}, \sigma_{j}\right)_{i, j=1, \ldots, n}}\right.}$.

- (H, i) is unique in a very specific sense.

In fact, if also (K, j) fulfills $\overline{\text { span }} j(S)=K$, then v becomes a unitary.
Also, compare positive numbers: $S=\{\omega\}, \mathrm{f}^{\ddagger, \omega}:=\lambda \geq 0$.

- Composition of PD-kernels is reflected by tensor products.
$(\text { If })^{\sigma, \sigma^{\prime}}:=\|^{\sigma, \sigma^{\prime}} \mathfrak{f} \sigma, \sigma^{\prime}$. (Schur prod.) $\mathfrak{E} \leadsto i: S \rightarrow H, \quad \mathrm{I} \leadsto j: S \rightarrow K$

Note: (H, i) is an excellent square root of $£!$

- \underline{f} is easily computable in terms of (H, i).

Try to do the same with the collection of numbers $\sqrt{\sum_{i, j=1}^{n} \bar{z}_{i} i_{i} \sigma_{i}, \sigma_{j} z_{j}}$ or with the collection of matrices $\sqrt{\left({ }^{\left(\sigma_{i}, \sigma_{j}\right.}\right)_{i, j=1, \ldots, n}}$.

- (H, i) is unique in a very specific sense.

In fact, if also (K, j) fulfills $\overline{\text { span }} j(S)=K$, then v becomes a unitary.
Also, compare positive numbers: $S=\{\omega\}, \mathfrak{f}^{\omega, \omega}:=\lambda \geq 0$.

- Composition of PD-kernels is reflected by tensor products.

$$
\begin{aligned}
& \text { (If) } \sigma^{\sigma, \sigma^{\prime}}:=\mathfrak{l}^{\sigma, \sigma^{\prime}} \mathfrak{\notin , \sigma ^ { \prime }} . \text { (Schur prod.) } \mathfrak{\mathfrak { l }} \leadsto i: S \rightarrow H, \quad \mathfrak{l} \leadsto j: S \rightarrow K \\
& (\text { If }) \leadsto(i \otimes j)(\sigma):=i(\sigma) \otimes j(\sigma) \in H \otimes K \text {. Note: } \overline{\operatorname{span}}(i \otimes j)(S) \subsetneq H \otimes K!
\end{aligned}
$$

Example. A kernel $\mathfrak{f}: S \times S \rightarrow \mathcal{B}$ over a set S is positive definite (6)
if $\quad \sum b_{i}^{*} \mathfrak{f}^{\sigma_{i}, \sigma_{j}} b_{j} \geq 0 \quad$ for all finite choices of $\sigma_{i} \in S$ and $b_{i} \in \mathcal{B}$.

Example. A kernel $\mathfrak{f}: S \times S \rightarrow \mathcal{B}$ over a set S is positive definite (6)
if $\quad \sum_{i, j} b_{i}^{*} \mathfrak{F}^{\sigma_{i}, \sigma_{j}} b_{j} \geq 0 \quad$ for all finite choices of $\sigma_{i} \in S$ and $b_{i} \in \mathcal{B}$.
Theorem. (Kolmogorov decomposition.) If \mathfrak{f} is \mathcal{B}-valued PDkernel over S, then there exist a Hilbert \mathcal{B}-module E and a map $i: S \rightarrow E$ such that

$$
\left\langle i(\sigma), i\left(\sigma^{\prime}\right)\right\rangle=\mathfrak{f}^{\sigma, \sigma^{\prime}}
$$

and $E=\overline{\operatorname{span}} i(S) \mathcal{B}$. Moreover, if $j: S \rightarrow F$ fulfills $\left\langle j(\sigma), j\left(\sigma^{\prime}\right)\right\rangle=$ $\mathfrak{\ddagger} \sigma, \sigma^{\prime}$, then $v: i(\sigma) \mapsto j(\sigma)$ extends to a unique isometry $E \rightarrow F$.

Example. A kernel $\mathfrak{f}: S \times S \rightarrow \mathcal{B}$ over a set S is positive definite (6)
if $\quad \sum_{i, j} b_{i}^{*} \not \mathfrak{F}^{\sigma_{i}, \sigma_{j}} b_{j} \geq 0 \quad$ for all finite choices of $\sigma_{i} \in S$ and $b_{i} \in \mathcal{B}$.
Theorem. (Kolmogorov decomposition.) If \mathfrak{f} is \mathcal{B}-valued PDkernel over S, then there exist a Hilbert \mathcal{B}-module E and a map $i: S \rightarrow E$ such that

$$
\left\langle i(\sigma), i\left(\sigma^{\prime}\right)\right\rangle=\mathfrak{f}^{\sigma, \sigma^{\prime}}
$$

and $E=\overline{\operatorname{span}} i(S) \mathcal{B}$. Moreover, if $j: S \rightarrow F$ fulfills $\left\langle j(\sigma), j\left(\sigma^{\prime}\right)\right\rangle=$ $\mathfrak{f} \sigma, \sigma^{\prime}$, then $v: i(\sigma) \mapsto j(\sigma)$ extends to a unique isometry $E \rightarrow F$.

Proof. On $S_{\mathbb{C}} \otimes \mathcal{B}$ define the \mathcal{B}-valued sesquilinear map

$$
\left\langle e_{\sigma} \otimes b, e_{\sigma^{\prime}} \otimes b^{\prime}\right\rangle:=b^{*} \mathfrak{£}^{\sigma, \sigma^{\prime}} b^{\prime}
$$

PD is born to make that positive.

Example. A kernel $\mathfrak{f}: S \times S \rightarrow \mathcal{B}$ over a set S is positive definite(6) if $\quad \sum_{i, j} b_{i}^{*} \mathfrak{f}^{\sigma_{i}, \sigma_{j}} b_{j} \geq 0 \quad$ for all finite choices of $\sigma_{i} \in S$ and $b_{i} \in \mathcal{B}$.

Theorem. (Kolmogorov decomposition.) If \mathfrak{f} is \mathcal{B}-valued PDkernel over S, then there exist a Hilbert \mathcal{B}-module E and a map $i: S \rightarrow E$ such that

$$
\left\langle i(\sigma), i\left(\sigma^{\prime}\right)\right\rangle=\mathfrak{t}^{\sigma, \sigma^{\prime}}
$$

and $E=\overline{\operatorname{span}} i(S) \mathcal{B}$. Moreover, if $j: S \rightarrow F$ fulfills $\left\langle j(\sigma), j\left(\sigma^{\prime}\right)\right\rangle=$ $\mathfrak{F} \sigma, \sigma^{\prime}$, then $v: i(\sigma) \mapsto j(\sigma)$ extends to a unique isometry $E \rightarrow F$.

Proof. On $S_{\mathbb{C}} \otimes \mathcal{B}$ define the \mathcal{B}-valued sesquilinear map

$$
\left\langle e_{\sigma} \otimes b, e_{\sigma^{\prime}} \otimes b^{\prime}\right\rangle:=b^{*} \mathrm{E}^{\sigma, \sigma^{\prime}} b^{\prime}
$$

PD is born to make that positive. Rest: Quotient by \mathcal{N} and completion, with $i: \sigma \mapsto e_{\sigma} \otimes \mathbf{1}+\mathcal{N}$. $■$

Note: (E, i) is a square root of $\mathfrak{\ell}$, that fulfills:

- \mathfrak{f} is easily computable in terms of (E, i).

Note: (E, i) is a square root of \mathfrak{z}, that fulfills:

- \mathfrak{f} is easily computable in terms of (E, i).
- (H, i) is unique in a very specific sense.

In fact, if also (F, j) fulfills $\overline{\text { span }} j(S) \mathcal{B}=F$, then v becomes a unitary.

Note: (E, i) is a square root of \mathfrak{z}, that fulfills:

- $\underline{\mathfrak{E} \text { is easily computable in terms of }(E, i) .}$
- (H, i) is unique in a very specific sense.

In fact, if also (F, j) fulfills $\overline{\text { span }} j(S) \mathcal{B}=F$, then v becomes a unitary.

However:

Note: (E, i) is a square root of \mathfrak{l}, that fulfills:

- \mathfrak{f} is easily computable in terms of (E, i).
- $\underline{(H, i) \text { is unique in a very specific sense. }}$

In fact, if also (F, j) fulfills $\overline{\text { span }} j(S) \mathcal{B}=F$, then v becomes a unitary.

However:

- It does NOT help composing PD-kernels.

There is no reasonable tensor product of right Hilbert \mathcal{B}-modules that recovers what we did for the one-point set $S=\{\omega\}$.

In fact, how could it?
Our composed square root $\beta \gamma$ depends on the choice of γ !

Example. A kernel $\mathfrak{\Omega}: S \times S \rightarrow \mathcal{B}(\mathcal{A}, \mathcal{B})$ over a set S is completely positive definite (CPD) if

$$
\sum_{i, j} b_{i}^{*} \Re^{\sigma_{i}, \sigma_{j}}\left(a_{i}^{*} a_{j}\right) b_{j} \geq 0
$$

for all finite choices of $\sigma_{i} \in S, a_{i} \in \mathcal{A}$ and $b_{i} \in \mathcal{B}$.

Example. A kernel $\mathfrak{R}: S \times S \rightarrow \mathcal{B}(\mathcal{A}, \mathcal{B})$ over a set S is

 completely positive definite (CPD) if$$
\sum_{i, j} b_{i}^{*} \Re^{\sigma_{i}, \sigma_{j}}\left(a_{i}^{*} a_{j}\right) b_{j} \geq 0
$$

for all finite choices of $\sigma_{i} \in S, a_{i} \in \mathcal{A}$ and $b_{i} \in \mathcal{B}$.

- Heo [Heo99]: $S=\{1, \ldots, n\}$. (Completely multi-positive map.) No composition considered. In particular, no semigroups.

Example. A kernel $\mathfrak{R}: S \times S \rightarrow \mathcal{B}(\mathcal{A}, \mathcal{B})$ over a set S is

 completely positive definite (CPD) if$$
\sum_{i, j} b_{i}^{*} \Re^{\sigma_{i}, \sigma_{j}}\left(a_{i}^{*} a_{j}\right) b_{j} \geq 0
$$

for all finite choices of $\sigma_{i} \in S, a_{i} \in \mathcal{A}$ and $b_{i} \in \mathcal{B}$.

- Heo [Heo99]: $S=\{1, \ldots, n\}$. (Completely multi-positive map.) No composition considered. In particular, no semigroups.
- Accardi and Koyzyrev [AK01]: Special case $\mathcal{B}(H)$ for $S=\{0,1\}$. However, semigroups! (The technique of the four semigroups)

Example. A kernel $\mathfrak{R}: S \times S \rightarrow \mathcal{B}(\mathcal{A}, \mathcal{B})$ over a set S is

 completely positive definite (CPD) if$$
\sum_{i, j} b_{i}^{*} \Re^{\sigma_{i}, \sigma_{j}}\left(a_{i}^{*} a_{j}\right) b_{j} \geq 0
$$

for all finite choices of $\sigma_{i} \in S, a_{i} \in \mathcal{A}$ and $b_{i} \in \mathcal{B}$.

- Heo [Heo99]: $S=\{1, \ldots, n\}$. (Completely multi-positive map.) No composition considered. In particular, no semigroups.
- Accardi and Koyzyrev [AK01]: Special case $\mathcal{B}(H)$ for $S=\{0,1\}$. However, semigroups! (The technique of the four semigroups)
- Barreto, Bhat, Liebscher, and MS [BBLS04]: General case. In particular, CPD-semigroups.

Example. A kernel $\Omega: S \times S \rightarrow \mathcal{B}(\mathcal{A}, \mathcal{B})$ over a set S is completely positive definite (CPD) if

$$
\sum_{i, j} b_{i}^{*} \Re^{\sigma_{i}, \sigma_{j}}\left(a_{i}^{*} a_{j}\right) b_{j} \geq 0
$$

for all finite choices of $\sigma_{i} \in S, a_{i} \in \mathcal{A}$ and $b_{i} \in \mathcal{B}$.

- Heo [Heo99]: $S=\{1, \ldots, n\}$. (Completely multi-positive map.) No composition considered. In particular, no semigroups.
- Accardi and Koyzyrev [AK01]: Special case $\mathcal{B}(H)$ for $S=\{0,1\}$. However, semigroups! (The technique of the four semigroups)
- Barreto, Bhat, Liebscher, and MS [BBLS04]: General case. In particular, CPD-semigroups.
- Possibly Speicher [Spe98] (Habilitation thesis 1994)?

Example. A kernel $\mathfrak{\Omega}: S \times S \rightarrow \mathcal{B}(\mathcal{A}, \mathcal{B})$ over a set S is completely positive definite (CPD) if

$$
\sum_{i, j} b_{i}^{*} \Re^{\sigma_{i}, \sigma_{j}}\left(a_{i}^{*} a_{j}\right) b_{j} \geq 0
$$

for all finite choices of $\sigma_{i} \in S, a_{i} \in \mathcal{A}$ and $b_{i} \in \mathcal{B}$.

Example. A kernel $\mathfrak{R}: S \times S \rightarrow \mathcal{B}(\mathcal{A}, \mathcal{B})$ over a set S is completely positive definite (CPD) if

$$
\sum_{i, j} b_{i}^{*} \Re^{\sigma_{i}, \sigma_{j}}\left(a_{i}^{*} a_{j}\right) b_{j} \geq 0
$$

for all finite choices of $\sigma_{i} \in S, a_{i} \in \mathcal{A}$ and $b_{i} \in \mathcal{B}$.
Theorem. (Kolmogorov decomposition.) $\mathcal{A} \ni 1$. If Ω is a CPD-kernel over S from \mathcal{A} to \mathcal{B}, then there exist an $\mathcal{A}-\mathcal{B}$-correspondence E and a map $i: S \rightarrow E$ such that

$$
\left\langle i(\sigma), a i\left(\sigma^{\prime}\right)\right\rangle=\Omega^{\sigma, \sigma^{\prime}}(a)
$$

and $E=\overline{\operatorname{span}} \mathcal{A} i(S) \mathcal{B}$.

Example. A kernel $\mathfrak{R}: S \times S \rightarrow \mathcal{B}(\mathcal{A}, \mathcal{B})$ over a set S is completely positive definite (CPD) if

$$
\sum_{i, j} b_{i}^{*} \Re^{\sigma_{i}, \sigma_{j}}\left(a_{i}^{*} a_{j}\right) b_{j} \geq 0
$$

for all finite choices of $\sigma_{i} \in S, a_{i} \in \mathcal{A}$ and $b_{i} \in \mathcal{B}$.
Theorem. (Kolmogorov decomposition.) $\mathcal{A} \ni 1$. If Ω is a CPD-kernel over S from \mathcal{A} to \mathcal{B}, then there exist an $\mathcal{A}-\mathcal{B}$-correspondence E and a map $i: S \rightarrow E$ such that

$$
\left\langle i(\sigma), a i\left(\sigma^{\prime}\right)\right\rangle=\Omega^{\sigma, \sigma^{\prime}}(a)
$$

and $E=\overline{\operatorname{span}} \mathcal{A} i(S) \mathcal{B}$. Moreover, if $j: S \rightarrow F$ fulfills $\left\langle j(\sigma), j\left(\sigma^{\prime}\right)\right\rangle=$ $\Omega^{\sigma, \sigma^{\prime}}(a)$, then $v: i(\sigma) \mapsto j(\sigma)$ extends to a unique bilinear isometry $E \rightarrow F$.

Example. A kernel $\mathfrak{\Omega}: S \times S \rightarrow \mathcal{B}(\mathcal{A}, \mathcal{B})$ over a set S is completely positive definite (CPD) if

$$
\sum_{i, j} b_{i}^{*} \Re^{\sigma_{i}, \sigma_{j}}\left(a_{i}^{*} a_{j}\right) b_{j} \geq 0
$$

for all finite choices of $\sigma_{i} \in S, a_{i} \in \mathcal{A}$ and $b_{i} \in \mathcal{B}$.
Theorem. (Kolmogorov decomposition.) $\mathcal{A} \ni 1$. If Ω is a CPD-kernel over S from \mathcal{A} to \mathcal{B}, then there exist an $\mathcal{A}-\mathcal{B}$-correspondence E and a map $i: S \rightarrow E$ such that

$$
\left\langle i(\sigma), a i\left(\sigma^{\prime}\right)\right\rangle=\Omega^{\sigma, \sigma^{\prime}}(a)
$$

and $E=\overline{\operatorname{span}} \mathcal{A} i(S) \mathcal{B}$. Moreover, if $j: S \rightarrow F$ fulfills $\left\langle j(\sigma), j\left(\sigma^{\prime}\right)\right\rangle=$ $\Re^{\sigma, \sigma^{\prime}}(a)$, then $v: i(\sigma) \mapsto j(\sigma)$ extends to a unique bilinear isometry $E \rightarrow F$.

Note: $S=\{\omega\} \sim$ CP-maps. (Do NOT use n-positive for all $n!$) Kolmogorov \leadsto Paschke's GNS-construction [Pas73].

1st proof. The \mathcal{B}-valued kernel $\mathfrak{f}(a, \sigma),\left(a^{\prime}, \sigma^{\prime}\right):=\mathfrak{\Re}^{\sigma, \sigma^{\prime}}\left(a^{*} a^{\prime}\right)$ over $\mathcal{A} \times S$ is, clearly, PD. On its Kolmogorov decomposition (E, \tilde{i}) check that $a \tilde{i}\left(a^{\prime}, \sigma\right):=\tilde{i}\left(a a^{\prime}, \sigma\right)$ defines a left action of \mathcal{A} on E. Put $i(\sigma):=$ $\tilde{i}(\mathbf{1}, \sigma)$.

1st proof. The \mathcal{B}-valued kernel $\mathfrak{\ddagger}(a, \sigma),\left(a^{\prime}, \sigma^{\prime}\right):=\mathfrak{R}^{\sigma, \sigma^{\prime}}\left(a^{*} a^{\prime}\right)$ over $\mathcal{A} \times S$ is, clearly, PD. On its Kolmogorov decomposition (E, \tilde{i}) check that $a \tilde{i}\left(a^{\prime}, \sigma\right):=\tilde{i}\left(a a^{\prime}, \sigma\right)$ defines a left action of \mathcal{A} on E. Put $i(\sigma):=$ $\tilde{i}(\mathbf{1}, \sigma)$.

2nd proof. On $\mathcal{A} \otimes S_{\mathbb{C}} \otimes \mathcal{B}$ define the \mathcal{B}-valued sesquilinear map

$$
\left\langle a \otimes e_{\sigma} \otimes b, a^{\prime} \otimes e_{\sigma^{\prime}} \otimes b^{\prime}\right\rangle:=b^{*} \Omega^{\sigma, \sigma^{\prime}}\left(a^{*} a^{\prime}\right) b^{\prime}
$$

CPD is born to make that positive.

1st proof. The \mathcal{B}-valued kernel $\mathfrak{f}(a, \sigma),\left(a^{\prime}, \sigma^{\prime}\right):=\mathfrak{\Re}^{\sigma, \sigma^{\prime}}\left(a^{*} a^{\prime}\right)$ over $\mathcal{A} \times S$ is, clearly, PD. On its Kolmogorov decomposition (E, \tilde{i}) check that $a \tilde{i}\left(a^{\prime}, \sigma\right):=\tilde{i}\left(a a^{\prime}, \sigma\right)$ defines a left action of \mathcal{A} on E. Put $i(\sigma):=$ $\tilde{i}(\mathbf{1}, \sigma)$.

2nd proof. On $\mathcal{A} \otimes S_{\mathbb{C}} \otimes \mathcal{B}$ define the \mathcal{B}-valued sesquilinear map

$$
\left\langle a \otimes e_{\sigma} \otimes b, a^{\prime} \otimes e_{\sigma^{\prime}} \otimes b^{\prime}\right\rangle:=b^{*} \mathfrak{G}^{\sigma, \sigma^{\prime}}\left(a^{*} a^{\prime}\right) b^{\prime}
$$

CPD is born to make that positive. Rest: Quotient by \mathcal{N} and completion, with $i: \sigma \mapsto \mathbf{1} \otimes e_{\sigma} \otimes \mathbf{1}+\mathcal{N}$.

1st proof. The \mathcal{B}-valued kernel $\mathfrak{f}(a, \sigma),\left(a^{\prime}, \sigma^{\prime}\right):=\mathfrak{\Re}^{\sigma, \sigma^{\prime}}\left(a^{*} a^{\prime}\right)$ over $\mathcal{A} \times S$ is, clearly, PD. On its Kolmogorov decomposition (E, \tilde{i}) check that $a \tilde{i}\left(a^{\prime}, \sigma\right):=\tilde{i}\left(a a^{\prime}, \sigma\right)$ defines a left action of \mathcal{A} on E. Put $i(\sigma):=$ $\tilde{i}(\mathbf{1}, \sigma)$.

2nd proof. On $\mathcal{A} \otimes S_{\mathbb{C}} \otimes \mathcal{B}$ define the \mathcal{B}-valued sesquilinear map

$$
\left\langle a \otimes e_{\sigma} \otimes b, a^{\prime} \otimes e_{\sigma^{\prime}} \otimes b^{\prime}\right\rangle:=b^{*} \Omega^{\sigma, \sigma^{\prime}}\left(a^{*} a^{\prime}\right) b^{\prime}
$$

CPD is born to make that positive. Rest: Quotient by \mathcal{N} and completion, with $i: \sigma \mapsto \mathbf{1} \otimes e_{\sigma} \otimes \mathbf{1}+\mathcal{N}$.

The first proof is "classical":
Guess a PD-kernel, do Kolmogorov, show its algebraic properties.

1st proof. The \mathcal{B}-valued kernel $\mathfrak{f}(a, \sigma),\left(a^{\prime}, \sigma^{\prime}\right):=\mathfrak{\Re}^{\sigma, \sigma^{\prime}}\left(a^{*} a^{\prime}\right)$ over $\mathcal{A} \times S$ is, clearly, PD. On its Kolmogorov decomposition (E, \tilde{i}) check that $a \tilde{i}\left(a^{\prime}, \sigma\right):=\tilde{i}\left(a a^{\prime}, \sigma\right)$ defines a left action of \mathcal{A} on E. Put $i(\sigma):=$ $\tilde{i}(\mathbf{1}, \sigma)$.

2nd proof. On $\mathcal{A} \otimes S_{\mathbb{C}} \otimes \mathcal{B}$ define the \mathcal{B}-valued sesquilinear map

$$
\left\langle a \otimes e_{\sigma} \otimes b, a^{\prime} \otimes e_{\sigma^{\prime}} \otimes b^{\prime}\right\rangle:=b^{*} \Re^{\sigma, \sigma^{\prime}}\left(a^{*} a^{\prime}\right) b^{\prime}
$$

CPD is born to make that positive. Rest: Quotient by \mathcal{N} and completion, with $i: \sigma \mapsto \mathbf{1} \otimes e_{\sigma} \otimes \mathbf{1}+\mathcal{N}$.

The first proof is "classical":
Guess a PD-kernel, do Kolmogorov, show its algebraic properties.
The second proof is "modern": Start with a bimodule, define the only reasonable inner product that emerges from CPD. (The algebraic properties are general theory of correspondences.)

Example: The Stinespring construction.

Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be a CP-map.

Example: The Stinespring construction.

Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be a CP-map.
Represent $\mathcal{B} \subset \mathcal{B}(G)$ faithfully on a Hilbert space G.

Example: The Stinespring construction.

Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be a CP-map.
Represent $\mathcal{B} \subset \mathcal{B}(G)$ faithfully on a Hilbert space G.
Guess that the kernel $\mathfrak{f}^{(a, g),\left(a^{\prime}, g^{\prime}\right)}:=\left\langle g, \varphi\left(a^{*} a^{\prime}\right) g\right\rangle \operatorname{over}(\mathcal{A}, G)$ is PD.

Example: The Stinespring construction.

Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be a CP-map.
Represent $\mathcal{B} \subset \mathcal{B}(G)$ faithfully on a Hilbert space G.
Guess that the kernel $\mathfrak{f}(a, g),\left(a^{\prime}, g^{\prime}\right):=\left\langle g, \varphi\left(a^{*} a^{\prime}\right) g\right\rangle \operatorname{over}(\mathcal{A}, G)$ is PD. Prove it!

Example: The Stinespring construction.

Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be a CP-map.
Represent $\mathcal{B} \subset \mathcal{B}(G)$ faithfully on a Hilbert space G.
Guess that the kernel $\mathfrak{f}^{(a, g),\left(a^{\prime}, g^{\prime}\right)}:=\left\langle g, \varphi\left(a^{*} a^{\prime}\right) g\right\rangle \operatorname{over}(\mathcal{A}, G)$ is PD.
Prove it!
Do the Kolmogorov decomposition (H, i) for $\mathfrak{\ell}$.

Example: The Stinespring construction.

Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be a CP-map.
Represent $\mathcal{B} \subset \mathcal{B}(G)$ faithfully on a Hilbert space G.
Guess that the kernel $\mathfrak{f}^{(a, g),\left(a^{\prime}, g^{\prime}\right)}:=\left\langle g, \varphi\left(a^{*} a^{\prime}\right) g\right\rangle \operatorname{over}(\mathcal{A}, G)$ is PD.
Prove it!
Do the Kolmogorov decomposition (H, i) for \mathfrak{f}.
Show that $\operatorname{ai}\left(a^{\prime}, g\right):=i\left(a a^{\prime}, g\right)$ defines an action of \mathcal{A}.

Example: The Stinespring construction.

Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be a CP-map.
Represent $\mathcal{B} \subset \mathcal{B}(G)$ faithfully on a Hilbert space G.
Guess that the kernel $\mathfrak{f}^{(a, g),\left(a^{\prime}, g^{\prime}\right)}:=\left\langle g, \varphi\left(a^{*} a^{\prime}\right) g\right\rangle \operatorname{over}(\mathcal{A}, G)$ is PD.
Prove it!
Do the Kolmogorov decomposition (H, i) for $\mathfrak{£}$.
Show that $a i\left(a^{\prime}, g\right):=i\left(a a^{\prime}, g\right)$ defines an action of \mathcal{A}.
Show that $v: g \mapsto i(\mathbf{1}, g)$ defines a bounded operator $G \rightarrow H$.

Example: The Stinespring construction.

Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be a CP-map.
Represent $\mathcal{B} \subset \mathcal{B}(G)$ faithfully on a Hilbert space G.
Guess that the kernel $\mathfrak{f}^{(a, g),\left(a^{\prime}, g^{\prime}\right)}:=\left\langle g, \varphi\left(a^{*} a^{\prime}\right) g\right\rangle \operatorname{over}(\mathcal{A}, G)$ is PD.
Prove it!
Do the Kolmogorov decomposition (H, i) for \mathfrak{f}.
Show that $a i\left(a^{\prime}, g\right):=i\left(a a^{\prime}, g\right)$ defines an action of \mathcal{A}.
Show that $v: g \mapsto i(\mathbf{1}, g)$ defines a bounded operator $G \rightarrow H$.
Verify $v^{*} a v=\varphi(a)$.

Example: The Stinespring construction.

Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be a CP-map.
Represent $\mathcal{B} \subset \mathcal{B}(G)$ faithfully on a Hilbert space G.
Guess that the kernel $\mathfrak{f}^{(a, g),\left(a^{\prime}, g^{\prime}\right)}:=\left\langle g, \varphi\left(a^{*} a^{\prime}\right) g\right\rangle \operatorname{over}(\mathcal{A}, G)$ is PD.
Prove it!
Do the Kolmogorov decomposition (H, i) for \mathfrak{f}.
Show that $a i\left(a^{\prime}, g\right):=i\left(a a^{\prime}, g\right)$ defines an action of \mathcal{A}.
Show that $v: g \mapsto i(\mathbf{1}, g)$ defines a bounded operator $G \rightarrow H$.
Verify $v^{*} a v=\varphi(a)$.
But how much work is this!

Example: The Stinespring construction.

Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be a CP-map.
Represent $\mathcal{B} \subset \mathcal{B}(G)$ faithfully on a Hilbert space G.
Guess that the kernel $\mathfrak{f}(a, g),\left(a^{\prime}, g^{\prime}\right):=\left\langle g, \varphi\left(a^{*} a^{\prime}\right) g\right\rangle \operatorname{over}(\mathcal{A}, G)$ is PD.
Prove it!
Do the Kolmogorov decomposition (H, i) for $£$.
Show that $\operatorname{ai}\left(a^{\prime}, g\right):=i\left(a a^{\prime}, g\right)$ defines an action of \mathcal{A}.
Show that $v: g \mapsto i(\mathbf{1}, g)$ defines a bounded operator $G \rightarrow H$.
Verify $v^{*} a v=\varphi(a)$.
But how much work is this!

Paschke: $\varphi \sim(E, \xi)$ such that $\langle\xi, a \xi\rangle=\varphi(a)$ and $\overline{\operatorname{span}} \mathcal{A} \xi \mathcal{B}=E$.

Example: The Stinespring construction.

Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be a CP-map.

Represent $\mathcal{B} \subset \mathcal{B}(G)$ faithfully on a Hilbert space G.
Guess that the kernel $\mathfrak{f}(a, g),\left(a^{\prime}, g^{\prime}\right):=\left\langle g, \varphi\left(a^{*} a^{\prime}\right) g\right\rangle \operatorname{over}(\mathcal{A}, G)$ is PD.
Prove it!
Do the Kolmogorov decomposition (H, i) for $\begin{aligned} & \text { £. }\end{aligned}$
Show that $\operatorname{ai}\left(a^{\prime}, g\right):=i\left(a a^{\prime}, g\right)$ defines an action of \mathcal{A}.
Show that $v: g \mapsto i(\mathbf{1}, g)$ defines a bounded operator $G \rightarrow H$.
Verify $v^{*} a v=\varphi(a)$.
But how much work is this!

Paschke: $\varphi \sim(E, \xi)$ such that $\langle\xi, a \xi\rangle=\varphi(a)$ and $\overline{\operatorname{span}} \mathcal{A} \xi \mathcal{B}=E$. If $\mathcal{B} \subset \mathcal{B}(G)$, then $H:=E \odot G$ (tensor product of correspondences)

Example: The Stinespring construction.

Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be a CP-map.

Represent $\mathcal{B} \subset \mathcal{B}(G)$ faithfully on a Hilbert space G.
Guess that the kernel $\mathfrak{f}(a, g),\left(a^{\prime}, g^{\prime}\right):=\left\langle g, \varphi\left(a^{*} a^{\prime}\right) g\right\rangle \operatorname{over}(\mathcal{A}, G)$ is PD.
Prove it!
Do the Kolmogorov decomposition (H, i) for \mathfrak{f}.
Show that $\operatorname{ai}\left(a^{\prime}, g\right):=i\left(a a^{\prime}, g\right)$ defines an action of \mathcal{A}.
Show that $v: g \mapsto i(\mathbf{1}, g)$ defines a bounded operator $G \rightarrow H$.
Verify $v^{*} a v=\varphi(a)$.

But how much work is this!

Paschke: $\varphi \sim(E, \xi)$ such that $\langle\xi, a \xi\rangle=\varphi(a)$ and $\operatorname{span} \mathcal{A} \xi \mathcal{B}=E$. If $\mathcal{B} \subset \mathcal{B}(G)$, then $H:=E \odot G$ (tensor product of correspondences) \sim $\mathcal{B}(H) \ni\left(a \odot \mathrm{id}_{G}\right): x \odot g \mapsto a x \odot g$ and $\mathcal{B}(G, H) \ni\left(\xi \odot \mathrm{id}_{G}\right): g \mapsto \xi \odot g$.

Example: The Stinespring construction.

Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be a CP-map.

Represent $\mathcal{B} \subset \mathcal{B}(G)$ faithfully on a Hilbert space G.
Guess that the kernel $\mathfrak{f}(a, g),\left(a^{\prime}, g^{\prime}\right):=\left\langle g, \varphi\left(a^{*} a^{\prime}\right) g\right\rangle \operatorname{over}(\mathcal{A}, G)$ is PD.
Prove it!
Do the Kolmogorov decomposition (H, i) for \mathfrak{f}.
Show that $\operatorname{ai}\left(a^{\prime}, g\right):=i\left(a a^{\prime}, g\right)$ defines an action of \mathcal{A}.
Show that $v: g \mapsto i(\mathbf{1}, g)$ defines a bounded operator $G \rightarrow H$.
Verify $v^{*} a v=\varphi(a)$.

But how much work is this!

Paschke: $\varphi \sim(E, \xi)$ such that $\langle\xi, a \xi\rangle=\varphi(a)$ and $\overline{\operatorname{span}} \mathcal{A} \xi \mathcal{B}=E$. If $\mathcal{B} \subset \mathcal{B}(G)$, then $H:=E \odot G$ (tensor product of correspondences) \sim $\mathcal{B}(H) \ni\left(a \odot \mathrm{id}_{G}\right): x \odot g \mapsto a x \odot g$ and $\mathcal{B}(G, H) \ni\left(\xi \odot \mathrm{id}_{G}\right): g \mapsto \xi \odot g$. Then $\left(\xi \odot \mathrm{id}_{G}\right)^{*}\left(a \odot \mathrm{id}_{G}\right)\left(\xi \odot \mathrm{id}_{G}\right)=\varphi(a) \odot \mathrm{id}_{G}=\varphi(a)$.

A recent example: (Ramesh)
A map $T: E_{\mathcal{A}} \rightarrow F_{\mathcal{B}}$ is a φ-map if $\left\langle T(x), T\left(x^{\prime}\right)\right\rangle=\varphi\left(\left\langle x, x^{\prime}\right\rangle\right)$.

A recent example: (Ramesh)

A map $T: E_{\mathcal{A}} \rightarrow F_{\mathcal{B}}$ is a φ-map if $\left\langle T(x), T\left(x^{\prime}\right)\right\rangle=\varphi\left(\left\langle x, x^{\prime}\right\rangle\right)$. Do GNS (\mathcal{E}, ξ) for φ.

A recent example: (Ramesh)

A map $T: E_{\mathcal{A}} \rightarrow F_{\mathcal{B}}$ is a φ-map if $\left\langle T(x), T\left(x^{\prime}\right)\right\rangle=\varphi\left(\left\langle x, x^{\prime}\right\rangle\right)$.
Do GNS (\mathcal{E}, ξ) for φ. Define an isometry $\zeta: E \odot \mathcal{E} \rightarrow F$ by $\zeta(x \odot a \xi b):=$ $T(x a) b$.

A recent example: (Ramesh)

A map $T: E_{\mathcal{A}} \rightarrow F_{\mathcal{B}}$ is a φ-map if $\left\langle T(x), T\left(x^{\prime}\right)\right\rangle=\varphi\left(\left\langle x, x^{\prime}\right\rangle\right)$.
Do GNS (\mathcal{E}, ξ) for φ. Define an isometry $\zeta: E \odot \mathcal{E} \rightarrow F$ by $\zeta(x \odot a \xi b):=$ $T(x a) b$.
Then $\zeta(x \odot \xi)=T(x)$.

A recent example: (Ramesh)
A map $T: E_{\mathcal{A}} \rightarrow F_{\mathcal{B}}$ is a φ-map if $\left\langle T(x), T\left(x^{\prime}\right)\right\rangle=\varphi\left(\left\langle x, x^{\prime}\right\rangle\right)$.
Do GNS (\mathcal{E}, ξ) for φ. Define an isometry $\zeta: E \odot \mathcal{E} \rightarrow F$ by $\zeta(x \odot a \xi b):=$ $T(x a) b$.
Then $\zeta(x \odot \xi)=T(x)$.
Tensoring with G for $\mathcal{B} \subset \mathcal{B}(G)$ gives a generalization of the factorization result for $\mathcal{B}=\mathcal{B}(G)$ by Bhat, Ramesh, and Sumesh [BRS10]:

A recent example: (Ramesh)
A map $T: E_{\mathcal{A}} \rightarrow F_{\mathcal{B}}$ is a φ-map if $\left\langle T(x), T\left(x^{\prime}\right)\right\rangle=\varphi\left(\left\langle x, x^{\prime}\right\rangle\right)$.
Do GNS (\mathcal{E}, ξ) for φ. Define an isometry $\zeta: E \odot \mathcal{E} \rightarrow F$ by $\zeta(x \odot a \xi b):=$ $T(x a) b$.
Then $\zeta(x \odot \xi)=T(x)$.
Tensoring with G for $\mathcal{B} \subset \mathcal{B}(G)$ gives a generalization of the factorization result for $\mathcal{B}=\mathcal{B}(G)$ by Bhat, Ramesh, and Sumesh [BRS10]:
$H:=\mathcal{E} \odot G, \quad K:=E \odot \mathcal{E} \odot G=E \odot H, \quad L:=F \odot G$.

A recent example: (Ramesh)
A map $T: E_{\mathcal{A}} \rightarrow F_{\mathcal{B}}$ is a φ-map if $\left\langle T(x), T\left(x^{\prime}\right)\right\rangle=\varphi\left(\left\langle x, x^{\prime}\right\rangle\right)$.
Do GNS (\mathcal{E}, ξ) for φ. Define an isometry $\zeta: E \odot \mathcal{E} \rightarrow F$ by $\zeta(x \odot a \xi b):=$ $T(x a) b$.
Then $\zeta(x \odot \xi)=T(x)$.
Tensoring with G for $\mathcal{B} \subset \mathcal{B}(G)$ gives a generalization of the factorization result for $\mathcal{B}=\mathcal{B}(G)$ by Bhat, Ramesh, and Sumesh [BRS10]:
$H:=\mathcal{E} \odot G, \quad K:=E \odot \mathcal{E} \odot G=E \odot H, \quad L:=F \odot G$.
$\rho(a):=a \odot \operatorname{id}_{G} \in \mathcal{B}(H)$, and $v:=\xi \odot \mathrm{id}_{G} \in \mathcal{B}(G, H)$. (\sim Stinespring. $)$

A recent example: (Ramesh)
A map $T: E_{\mathcal{A}} \rightarrow F_{\mathcal{B}}$ is a φ-map if $\left\langle T(x), T\left(x^{\prime}\right)\right\rangle=\varphi\left(\left\langle x, x^{\prime}\right\rangle\right)$.
Do GNS (\mathcal{E}, ξ) for φ. Define an isometry $\zeta: E \odot \mathcal{E} \rightarrow F$ by $\zeta(x \odot a \xi b):=$ $T(x a) b$.
Then $\zeta(x \odot \xi)=T(x)$.
Tensoring with G for $\mathcal{B} \subset \mathcal{B}(G)$ gives a generalization of the factorization result for $\mathcal{B}=\mathcal{B}(G)$ by Bhat, Ramesh, and Sumesh [BRS10]:
$H:=\mathcal{E} \odot G, \quad K:=E \odot \mathcal{E} \odot G=E \odot H, \quad L:=F \odot G$.
$\rho(a):=a \odot \mathrm{id}_{G} \in \mathcal{B}(H)$, and $v:=\xi \odot \mathrm{id}_{G} \in \mathcal{B}(G, H)$. (\sim Stinespring.)
$\Psi(x):=x \odot \mathrm{id}_{H} \in \mathcal{B}(H, E \odot H)=\mathcal{B}(H, K)$.

A recent example: (Ramesh)
A map $T: E_{\mathcal{A}} \rightarrow F_{\mathcal{B}}$ is a φ-map if $\left\langle T(x), T\left(x^{\prime}\right)\right\rangle=\varphi\left(\left\langle x, x^{\prime}\right\rangle\right)$.
Do GNS (\mathcal{E}, ξ) for φ. Define an isometry $\zeta: E \odot \mathcal{E} \rightarrow F$ by $\zeta(x \odot a \xi b):=$ $T(x a) b$.
Then $\zeta(x \odot \xi)=T(x)$.
Tensoring with G for $\mathcal{B} \subset \mathcal{B}(G)$ gives a generalization of the factorization result for $\mathcal{B}=\mathcal{B}(G)$ by Bhat, Ramesh, and Sumesh [BRS10]:
$H:=\mathcal{E} \odot G, \quad K:=E \odot \mathcal{E} \odot G=E \odot H, \quad L:=F \odot G$.
$\rho(a):=a \odot \mathrm{id}_{G} \in \mathcal{B}(H)$, and $v:=\xi \odot \mathrm{id}_{G} \in \mathcal{B}(G, H)$. (\sim Stinespring.)
$\Psi(x):=x \odot \mathrm{id}_{H} \in \mathcal{B}(H, E \odot H)=\mathcal{B}(H, K)$.
$\left(\sim \Psi(x)^{*} \Psi\left(x^{\prime}\right)=\rho\left(\left\langle x, x^{\prime}\right\rangle\right)\right.$ and $\left.\Phi(x a)=\Phi(x) \rho(a).\right)$

A recent example: (Ramesh)
A map $T: E_{\mathcal{A}} \rightarrow F_{\mathcal{B}}$ is a φ-map if $\left\langle T(x), T\left(x^{\prime}\right)\right\rangle=\varphi\left(\left\langle x, x^{\prime}\right\rangle\right)$.
Do GNS (\mathcal{E}, ξ) for φ. Define an isometry $\zeta: E \odot \mathcal{E} \rightarrow F$ by $\zeta(x \odot a \xi b):=$ $T(x a) b$.
Then $\zeta(x \odot \xi)=T(x)$.
Tensoring with G for $\mathcal{B} \subset \mathcal{B}(G)$ gives a generalization of the factorization result for $\mathcal{B}=\mathcal{B}(G)$ by Bhat, Ramesh, and Sumesh [BRS10]:
$H:=\mathcal{E} \odot G, \quad K:=E \odot \mathcal{E} \odot G=E \odot H, \quad L:=F \odot G$.
$\rho(a):=a \odot \mathrm{id}_{G} \in \mathcal{B}(H)$, and $v:=\xi \odot \mathrm{id}_{G} \in \mathcal{B}(G, H)$. (\sim Stinespring.)
$\Psi(x):=x \odot \mathrm{id}_{H} \in \mathcal{B}(H, E \odot H)=\mathcal{B}(H, K)$.
$\left(\sim \Psi(x)^{*} \Psi\left(x^{\prime}\right)=\rho\left(\left\langle x, x^{\prime}\right\rangle\right)\right.$ and $\left.\Phi(x a)=\Phi(x) \rho(a).\right)$
$w:=\zeta \odot \mathrm{id}_{G} \in \mathcal{B}(K, L)$.

A recent example: (Ramesh)
A map $T: E_{\mathcal{A}} \rightarrow F_{\mathcal{B}}$ is a φ-map if $\left\langle T(x), T\left(x^{\prime}\right)\right\rangle=\varphi\left(\left\langle x, x^{\prime}\right\rangle\right)$.
Do GNS (\mathcal{E}, ξ) for φ. Define an isometry $\zeta: E \odot \mathcal{E} \rightarrow F$ by $\zeta(x \odot a \xi b):=$ $T(x a) b$.
Then $\zeta(x \odot \xi)=T(x)$.
Tensoring with G for $\mathcal{B} \subset \mathcal{B}(G)$ gives a generalization of the factorization result for $\mathcal{B}=\mathcal{B}(G)$ by Bhat, Ramesh, and Sumesh [BRS10]:
$H:=\mathcal{E} \odot G, \quad K:=E \odot \mathcal{E} \odot G=E \odot H, \quad L:=F \odot G$.
$\rho(a):=a \odot \mathrm{id}_{G} \in \mathcal{B}(H)$, and $v:=\xi \odot \mathrm{id}_{G} \in \mathcal{B}(G, H)$. (\sim Stinespring.)
$\Psi(x):=x \odot \mathrm{id}_{H} \in \mathcal{B}(H, E \odot H)=\mathcal{B}(H, K)$.
$\left(\sim \Psi(x) * \Psi\left(x^{\prime}\right)=\rho\left(\left\langle x, x^{\prime}\right\rangle\right)\right.$ and $\left.\Phi(x a)=\Phi(x) \rho(a).\right)$
$w:=\zeta \odot \mathrm{id}_{G} \in \mathcal{B}(K, L)$.
$\left(\sim w \Psi(x) v=(\zeta(x \odot \xi)) \odot \mathrm{id}_{G}=T(x) \odot \mathrm{id}_{G} \in \mathcal{B}(G, F \odot G)=\mathcal{B}(G, L).\right)$

Note: (E, i) is an excellent square root of Ω !
(12)

Note: (E, i) is an excellent square root of Ω !

- $\underline{\Omega}$ is easily computable in terms of (E, i).

Note: (E, i) is an excellent square root of Ω !

- $\underline{\Omega}$ is easily computable in terms of (E, i).
- (E, i) is unique in a very specific sense.

In fact, if also (F, j) fulfills $\overline{\operatorname{span}} \mathcal{A} j(S) \mathcal{B}=F$, then v becomes a bilinear unitary.

Note: (E, i) is an excellent square root of Ω !

- $\underline{\Omega}$ is easily computable in terms of (E, i).
- (E, i) is unique in a very specific sense.

In fact, if also (F, j) fulfills $\overline{\operatorname{span}} \mathcal{A} j(S) \mathcal{B}=F$, then v becomes a bilinear unitary.

- Tensor product shows that composition of CPD-kernels is CPD.

$$
\begin{aligned}
& (\mathfrak{L} \circ \mathfrak{\Re})^{\sigma, \sigma^{\prime}}:=\mathfrak{L}^{\sigma, \sigma^{\prime}} \circ \mathfrak{R}^{\sigma, \sigma^{\prime}} . \text { (Schur product.) } \\
& \mathfrak{\Omega} \leadsto i: S \rightarrow E, \quad \mathfrak{L} \leadsto j: S \rightarrow F
\end{aligned}
$$

Note: (E, i) is an excellent square root of Ω !

- $\underline{\Omega}$ is easily computable in terms of (E, i).
- (E, i) is unique in a very specific sense.

In fact, if also (F, j) fulfills $\overline{\operatorname{span}} \mathcal{A} j(S) \mathcal{B}=F$, then v becomes a bilinear unitary.

- Tensor product shows that composition of CPD-kernels is CPD.
$(\mathfrak{L} \circ \mathfrak{R})^{\sigma, \sigma^{\prime}}:=\mathfrak{R}^{\sigma, \sigma^{\prime}} \circ \mathfrak{R}^{\sigma, \sigma^{\prime}}$. (Schur product.) $\mathfrak{\Omega} \leadsto i: S \rightarrow E, \quad \mathcal{L} \leadsto j: S \rightarrow F$
$(\mathfrak{L} \circ \mathfrak{K}) \leadsto(i \odot j)(\sigma):=i(\sigma) \odot j(\sigma) \in E \odot F$.

Note: (E, i) is an excellent square root of Ω !

- Ω is easily computable in terms of (E, i).
- (E, i) is unique in a very specific sense.

In fact, if also (F, j) fulfills $\overline{\operatorname{span}} \mathcal{A} j(S) \mathcal{B}=F$, then v becomes a bilinear unitary.

- Tensor product shows that composition of CPD-kernels is CPD.
$(\mathfrak{L} \circ \mathfrak{R})^{\sigma, \sigma^{\prime}}:=\mathfrak{R}^{\sigma, \sigma^{\prime}} \circ \mathfrak{R}^{\sigma, \sigma^{\prime}}$. (Schur product.)
$\mathfrak{\Omega} \leadsto i: S \rightarrow E, \quad \mathfrak{Z} \leadsto j: S \rightarrow F$
$(\mathfrak{L} \circ \mathfrak{\Omega}) \leadsto(i \odot j)(\sigma):=i(\sigma) \odot j(\sigma) \in E \odot F$.
Here for ${ }_{\mathcal{A}} E_{\mathcal{B}}$ and ${ }_{\mathcal{B}} F_{\mathcal{C}}$, the internal tensor product $E \odot F$ is the unique $\mathcal{A}-C$-correspondence that is spanned by elementary tensors $x \odot y$ fulfilling

$$
\left\langle x \odot y, x^{\prime} \odot y^{\prime}\right\rangle=\left\langle y,\left\langle x, x^{\prime}\right\rangle y^{\prime}\right\rangle \text { and } a(x \odot y)=(a x) \odot y
$$

Construction: Start with $E \otimes F$.
(13)

Construction: Start with $E \otimes F$. Positivity:
(13)

Observe: $\langle x \otimes y, x \otimes y\rangle=\langle y,\langle x, x\rangle y\rangle=\left\langle y, \beta^{*} \beta y\right\rangle=\langle\beta y, \beta y\rangle \geq 0$.

Construction: Start with $E \otimes F$. Positivity:
Observe: $\langle x \otimes y, x \otimes y\rangle=\langle y,\langle x, x\rangle y\rangle=\left\langle y, \beta^{*} \beta y\right\rangle=\langle\beta y, \beta y\rangle \geq 0$.

- $\left\langle x_{1}, x_{1}^{\prime}\right\rangle+\ldots+\left\langle x_{n}, x_{n}^{\prime}\right\rangle$ is an inner product on $E_{1} \oplus \ldots \oplus E_{n}$. (The sum of positive elements in a C^{*}-algebra is positive.)

Construction: Start with $E \otimes F$. Positivity:
Observe: $\langle x \otimes y, x \otimes y\rangle=\langle y,\langle x, x\rangle y\rangle=\left\langle y, \beta^{*} \beta y\right\rangle=\langle\beta y, \beta y\rangle \geq 0$.

- $\left\langle x_{1}, x_{1}^{\prime}\right\rangle+\ldots+\left\langle x_{n}, x_{n}^{\prime}\right\rangle$ is an inner product on $E_{1} \oplus \ldots \oplus E_{n}$. (The sum of positive elements in a C^{*}-algebra is positive.)
- Put $x y^{*}: z \mapsto x\langle y, z\rangle$ and $E^{*}:=\left\{x^{*}: x \in E\right\}$. Then $\left\langle x^{\prime *}, x^{*}\right\rangle:=x^{\prime} x^{*}$ and $b x^{*} a:=\left(a^{*} x b^{*}\right)^{*}$ turns E^{*} into a $\mathcal{B}-\mathcal{B}^{a}(E)$-correspondence.
($x x^{*}$ is positive in the C^{*}-algebra $\mathcal{B}^{a}(\mathcal{B} \oplus E)$.)

Construction: Start with $E \otimes F$. Positivity:
Observe: $\langle x \otimes y, x \otimes y\rangle=\langle y,\langle x, x\rangle y\rangle=\left\langle y, \beta^{*} \beta y\right\rangle=\langle\beta y, \beta y\rangle \geq 0$.

- $\left\langle x_{1}, x_{1}^{\prime}\right\rangle+\ldots+\left\langle x_{n}, x_{n}^{\prime}\right\rangle$ is an inner product on $E_{1} \oplus \ldots \oplus E_{n}$. (The sum of positive elements in a C^{*}-algebra is positive.)
- Put $x y^{*}: z \mapsto x\langle y, z\rangle$ and $E^{*}:=\left\{x^{*}: x \in E\right\}$.

Then $\left\langle x^{\prime *}, x^{*}\right\rangle:=x^{\prime} x^{*}$ and $b x^{*} a:=\left(a^{*} x b^{*}\right)^{*}$ turns E^{*} into a $\mathcal{B}-\mathcal{B}^{a}(E)$-correspondence.
($x x^{*}$ is positive in the C^{*}-algebra $\mathcal{B}^{a}(\mathcal{B} \oplus E)$.)

- Define the Hilbert $M_{n}(\mathcal{B})$-module $E_{n}:=\left(\left(E^{*}\right)^{n}\right)^{*}$. Check that $\left\langle X_{n}, X_{n}^{\prime}\right\rangle=\left(\left\langle x_{i}, x_{j}^{\prime}\right\rangle\right)_{i j}$ and $\left(X_{n} B\right)_{i}=\sum_{j} x_{j} b_{j i}$.

Construction: Start with $E \otimes F$. Positivity:

Observe: $\langle x \otimes y, x \otimes y\rangle=\langle y,\langle x, x\rangle y\rangle=\left\langle y, \beta^{*} \beta y\right\rangle=\langle\beta y, \beta y\rangle \geq 0$.

- $\left\langle x_{1}, x_{1}^{\prime}\right\rangle+\ldots+\left\langle x_{n}, x_{n}^{\prime}\right\rangle$ is an inner product on $E_{1} \oplus \ldots \oplus E_{n}$.
(The sum of positive elements in a C^{*}-algebra is positive.)
- Put $x y^{*}: z \mapsto x\langle y, z\rangle$ and $E^{*}:=\left\{x^{*}: x \in E\right\}$.

Then $\left\langle x^{\prime *}, x^{*}\right\rangle:=x^{\prime} x^{*}$ and $b x^{*} a:=\left(a^{*} x b^{*}\right)^{*}$ turns E^{*} into a $\mathcal{B}-\mathcal{B}^{a}(E)$-correspondence.
($x x^{*}$ is positive in the C^{*}-algebra $\mathcal{B}^{a}(\mathcal{B} \oplus E)$.)

- Define the Hilbert $M_{n}(\mathcal{B})$-module $E_{n}:=\left(\left(E^{*}\right)^{n}\right)^{*}$. Check that $\left\langle X_{n}, X_{n}^{\prime}\right\rangle=\left(\left\langle x_{i}, x_{j}^{\prime}\right\rangle\right)_{i j}$ and $\left(X_{n} B\right)_{i}=\sum_{j} x_{j} b_{j i}$.
- Then

$$
\left\langle\sum_{i} x_{i} \otimes y_{i}, \sum_{i} x_{i} \otimes y_{i}\right\rangle=\left\langle X_{n} \otimes Y^{n}, X_{n} \otimes Y^{n}\right\rangle \geq 0
$$

Note:

- A CPD-kernel $\mathfrak{\Omega}$ from \mathcal{A} to \mathcal{B} and a CPD-kernel \mathfrak{R} from \mathcal{B} to C can be composed to form a CPD-kernel $\mathfrak{L} \circ \mathfrak{\Re}$ from \mathcal{A} to C.
- Viewing $w \in \mathbb{C}$ as map $z \mapsto z w$ on \mathbb{C} \mathbb{C}-valued PD-kernels correspond 1-1 with CPD-kernel from \mathbb{C} to \mathbb{C}. Schur product of PD-kernels=compositions of CPD-kernels.
- Viewing $b \in \mathcal{B}$ as map $z \mapsto z b$ from \mathbb{C} to \mathcal{B}
\mathcal{B}-valued PD-kernels correspond 1-1 with CPD-kernel from \mathbb{C} to \mathcal{B}. Usually, no composition! (Codomain and domain match only in the \mathbb{C}-valued case.)

Recall: $\mathfrak{R} \leadsto(E, i), \mathcal{L} \leadsto(F, j)$, then $\mathfrak{L} \circ \mathfrak{\Omega} \leadsto$

$$
\overline{\operatorname{span}}\{a i(\sigma) \odot j(\sigma) c: a \in \mathcal{A}, c \in C, \sigma \in S\}
$$

with embedding $i \odot j: \sigma \mapsto i(\sigma) \odot j(\sigma)$. This is (usually much!) smaller than

$$
\begin{aligned}
E \odot F= & (\overline{\operatorname{span}} \mathcal{A} i(S) \mathcal{B}) \odot(\overline{\operatorname{span} \mathcal{B} j(S) C)} \\
& =\overline{\operatorname{span}}\left\{a i(\sigma) \odot b j\left(\sigma^{\prime}\right) c: a \in \mathcal{A} ; b \in \mathcal{B} ; c \in \mathcal{C} ; \sigma, \sigma^{\prime} \in S\right\} .
\end{aligned}
$$

So, $E \odot F$ does not coincide but at least contains the GNScorrespondence of $\mathfrak{L} \circ \mathfrak{R}$.

The GNS-correspondences for Ω and \mathfrak{Z} allow easily to compute GNS-correspondence for $\mathfrak{L} \circ \mathfrak{K}$.
Nothing like this is true for Stinespring constructions!

Recall: (For simplicity for CP-maps.)
$T: \mathcal{A} \rightarrow \mathcal{B} \subset \mathcal{B}(G) \sim H=E \odot G, v=\xi \odot \operatorname{id}_{G}, \rho(a)=a \odot \mathrm{id}_{G}$.
$S: \mathcal{B} \rightarrow C \subset \mathcal{B}(K) \leadsto L=F \odot K, w=\zeta \odot \mathrm{id}_{K}, \pi(b)=b \odot \mathrm{id}_{K}$.
By no means does the Stinespring representation ρ for T help to construct the Stinespring representation for $S \circ T$!
(One needs to "tensor" E with the representation space $L=F \odot G$ of the Stinespring representation π for S, not with G !)

The GNS-correspondences E and F, on the other hand, are universal! (For each CP-map they need to be computed only once.)

Recall: (For simplicity for CP-maps.)
$T: \mathcal{A} \rightarrow \mathcal{B} \subset \mathcal{B}(G) \leadsto H=E \odot G, v=\xi \odot \mathrm{id}_{G}, \rho(a)=a \odot \mathrm{id}_{G}$.
$S: \mathcal{B} \rightarrow C \subset \mathcal{B}(K) \leadsto L=F \odot K, w=\zeta \odot \mathrm{id}_{K}, \pi(b)=b \odot \mathrm{id}_{K}$.
By no means does the Stinespring representation ρ for T help to construct the Stinespring representation for $S \circ T$!
(One needs to "tensor" E with the representation space $L=F \odot G$ of the Stinespring representation π for S, not with G !)

The GNS-correspondences E and F, on the other hand, are universal! (For each CP-map they need to be computed only once.)

Doing Stinespring representations for the individual members of a CP-semigroup on $\mathcal{B} \subset \mathcal{B}(G)$, is like considering a 2×2-system of complex linear equations as a real 4×4-system (ignoring all the structure hidden in the fact that certain 2×2-submatrices are very special) and applying the Gauß algorithm to the 4×4-system instead of trivially resolving the 2×2-system by hand.
$\mathfrak{I}=\left(\mathfrak{I}_{t}\right)_{t \geq 0}$ a CPD-semigroup over S on $\mathcal{B} \ni \mathbf{1}$.
Then the GNS-correspondences \mathcal{E}_{t} of the \mathfrak{I}_{t} fulfill $\mathcal{E}_{s} \odot \mathcal{E}_{t} \supset \mathcal{E}_{s+t}$, so
$\left(\mathcal{E}_{s_{m_{n}}^{n}} \odot\right.$
$\odot \mathcal{E}_{s_{1}^{n}} \odot \ldots$
$\odot\left(\mathcal{E}_{s_{m_{1}}^{1}} \odot\right.$
$\odot \ldots$
$\left.\odot \mathcal{E}_{s_{1}^{1}}\right) \supset$
$\mathcal{E}_{s_{m_{n}}^{n}+\ldots+s_{1}^{n}} \odot \ldots \odot$
$\odot \varepsilon_{s_{m_{1}}^{1}+\ldots+s_{1}^{1}}$

Fix $t>0, \leadsto$ inductive limit over $\mathbb{t}=\left(t_{n}, \ldots, t_{1}\right) \in(0, \infty)^{n}$ with
$t_{n}+\ldots+t_{1}=t$. For $E_{t}=\operatorname{limind}_{t} \mathcal{E}_{\mathbb{t}} \supset \mathcal{E}_{t}$
$\mathcal{E}_{s} \odot \mathcal{E}_{t} \supset \mathcal{E}_{s+t}$ becomes equality $E_{s} \odot E_{t}=E_{s+t}$,
so $E^{\odot}=\left(E_{t}\right)_{t \in \mathbb{R}_{+}}$is a product system. The $\xi_{t}^{\sigma}:=i_{t}(\sigma) \in \mathcal{E}_{t} \subset E_{t}$ fulfill $\xi_{s}^{\sigma} \odot \xi_{t}^{\sigma}=\xi_{s+t}^{\sigma}$ that is, for each $\sigma \in S$ the family $\xi^{\sigma \odot}=\left(\xi_{t}^{\sigma}\right)_{t \geq 0}$ is a unit, such that $\left\langle\xi_{t}^{\sigma}, \bullet \xi_{t}^{\sigma^{\prime}}\right\rangle=\mathfrak{I}_{t}^{\sigma, \sigma^{\prime}}$ for all $\sigma, \sigma^{\prime} \in S$, and the set $\left\{\xi^{\sigma \oplus}: \sigma \in S\right\}$ of units generates E^{\odot} as a product system. We see:

The square root of a CPD-semigroup (in particular, of a CPsemigroup) is a product system with generating set of units; Bhat and MS [BSOO].

- The product system of a PD-semigroup consists of symmetric Fock spaces. Applications:
Classical Lévy processes (Parthasarathy and Schmidt [PS72].) Quantum Lévy processes (Schürmann, MS, and Volkwardt [SSV07].)
- The product system of uniformly continuous normal CPDsemigroups on von Neumann algebras consists of time ordered Fock modules (Barreto, Bhat, Liebscher, and MS [BBLSO4]). For C^{*}-algebras this may fail (Bhat, Liebscher, and MS [BLS10])!
- The Markov semigroups that admit dilations by cocycle perturbations of "noises" are precisely the "spatial" Markov semigroups (MS [Ske09a]). Proof: Via "spatial" product systems (MS [Ske06] (preprint 2001))!

CP-semigroups on $\mathcal{B}^{a}(E)$
Let ϑ be a semigroup of (unital, for simplicity) endomorphisms ϑ_{t} of \mathcal{B}. Then $\mathcal{B}_{t}:=\mathcal{B}$ with $b . x_{t}:=\vartheta_{t}(b) x_{t}$ is its GNS-system with unit $(\mathbf{1})_{t \in \mathbb{R}_{+}}$.
It is not a good idea to tensor with G when $\mathcal{B} \subset \mathcal{B}(G)$. (Unless vN -alg.)
This changes when $\mathcal{B}=\mathcal{B}(G)$ - or better $\mathcal{B}=\mathcal{B}^{a}(E)$.
But only, if we tensor "from both sides"!
General: $T: \mathcal{B}^{a}\left(E_{\mathcal{B}}\right) \rightarrow \mathcal{B}^{a}\left(F_{\mathcal{C}}\right)$ and $S: \mathcal{B}^{a}\left(F_{\mathcal{C}}\right) \rightarrow \mathcal{B}^{a}\left(G_{\mathcal{D}}\right)$ CP-maps. Their GNS-correspondences \mathcal{E} and \mathcal{F}.
Require $\overline{\text { span }} \mathcal{K}(E) \mathcal{E}=\mathcal{E}$ and $\overline{\operatorname{span}} \mathcal{K}(F) \mathcal{F}=\mathcal{F}$ (strictness!). Then

$$
\begin{aligned}
& \left(E^{*} \odot \mathcal{E} \odot F\right) \odot\left(F^{*} \odot \mathcal{F} \odot G\right)=E^{*} \odot \mathcal{E} \odot\left(F \odot F^{*}\right) \odot \mathcal{F} \odot G \\
& \\
& \quad=E^{*} \odot \mathcal{E} \odot \mathcal{K}(F) \odot \mathcal{F} \odot G=E^{*} \odot(\mathcal{E} \odot \mathcal{F}) \odot G .
\end{aligned}
$$

So "sandwiching" between the representation modules (or spaces) preserves tensor products! (\sim Morita equivalence.)

Applications:

- ϑ a strict E_{0}-semigroup on $\mathcal{B}^{a}(E)$ with GNS-systems $\left(\mathcal{B}^{a}(E)_{t}\right)_{t \in \mathbb{R}_{+}}$. $\leadsto E_{t}:=E^{*} \odot \mathcal{B}^{a}(E)_{t} \odot E=E^{*} \odot_{t} E$ is product system via

$$
\left(x^{*} \odot_{s} x^{\prime}\right) \odot\left(y^{*} \odot_{t} y^{\prime}\right) \longmapsto x^{*} \odot_{s+t} \vartheta_{t}\left(x^{\prime} y^{*}\right) y^{\prime}
$$

(With "unit vector" MS [Ske02]. General [Ske09b] (preprint 2004).

- Special case: E a Hilbert spaces gives Bhat's construction [Bha96] of the (anti-)Arveson system [Arv89] of ϑ. ("Reverse" difficult!)
- $\mathcal{E}^{\odot}=\left(\mathcal{E}_{t}\right)_{t \in \mathbb{R}_{+}}$the GNS-system of a strict CP-semigroup T on $\mathcal{B}^{a}(E)$. Then $E_{t}:=E^{*} \odot \varepsilon_{t} \odot E$ gives a product system $E^{\odot}=\left(E_{t}\right)_{t \in \mathbb{R}_{+}}$of \mathcal{B}-correspondences.
- Special case: E a Hilbert spaces gives Bhat's Arveson system of T [Bha96] without dilating T first to an endomorphism semigroup.

Only briefly: Positivity in *-algebras

- For instance: b in a pre- C^{*}-algebra is positive when positive in $\overline{\mathcal{B}}$. b has a square root $\beta \in \overline{\mathcal{B}}$.
- For instance: $b \in \mathcal{L}^{a}(G)$ (G a pre-Hilbert space) is positive if $\langle g, b g\rangle \geq 0$ for every $g \in G$.
By an application of Friedrich's theorem, $b \in \mathcal{B}$ has a square root $\beta \in \mathcal{L}^{a}\left(G, G^{\prime}\right)$ where $\left.G \subset G^{\prime} \subset \bar{G}\right)$.
- New: Let \mathcal{B} be a unital *-algebra and \mathcal{S} a set of positive linear functionals on \mathcal{B}.
$b \in \mathcal{B}$ is \mathcal{S}-positive if $\varphi\left(c^{*} b c\right) \geq 0$ for all $\varphi \in \mathcal{S}$ and $c \in \mathcal{B}$.
\mathcal{B} is \mathcal{S}-separated if $\varphi\left(c b c^{\prime}\right)=0 \forall \varphi \in \mathcal{S} ; c, c^{\prime} \in \mathcal{B}$ implies $b=0$.

Example: Let $\mathcal{B}=\mathbb{C}\langle x\rangle$. Let $Z \subset \mathbb{C}$. Put $\mathcal{S}=\left\{\varphi_{w}: p \mapsto p(w), w \in Z\right\}$.

- $Z=\mathbb{R}$ or $Z=\mathbb{S}^{1}$. Then $p \geq 0 \Longleftrightarrow \exists q \in \mathcal{B}: \bar{q} q=p$.
- $Z=\mathbb{C}$. Then $p \geq 0 \Longrightarrow p=0$. (Liouville.)
- $Z \subset \mathbb{C}$ compact and $Z \backslash \partial Z \neq \emptyset$. Then $\mathcal{B} \subset C(Z)=\overline{\mathcal{B}}$
and $p \geq 0 \Longleftrightarrow \exists f \in C(Z): \bar{f} f=p$.
For instance, $Z=[-1,0], p=-x$
$\leadsto p=\bar{f} f \geq 0$ where $f=\sqrt{-x} \in C[-1,0]$.

$$
\mathfrak{K} \text { э } \quad \text { р рие } S \text { э э, }
$$

Łечı

References

[AK01] L. Accardi and S. Kozyrev, On the structure of Markov flows, Chaos Solitons Fractals 12 (2001), 2639-2655.
[Arv89] W. Arveson, Continuous analogues of Fock space, Mem. Amer. Math. Soc., no. 409, American Mathematical Society, 1989.
[BBLS04] S.D. Barreto, B.V.R. Bhat, V. Liebscher, and M. Skeide, Type I product systems of Hilbert modules, J. Funct. Anal. 212 (2004), 121-181, (Preprint, Cottbus 2001).
[Bha96] B.V.R. Bhat, An index theory for quantum dynamical semigroups, Trans. Amer. Math. Soc. 348 (1996), 561-583.
[BLS10] B.V.R. Bhat, V. Liebscher, and M. Skeide, Subsystems of Fock need not be Fock: Spatial CP-semigroups, Proc. Amer. Math. Soc. 138 (2010), 2443-2456, electronically Feb 2010, (arXiv: 0804.2169v2).
[BRS10] B.V.R. Bhat, G. Ramesh, and K. Sumesh, Stinespring's theorem for maps on Hilbert C^{*}-modules, Preprint, arXiv: 1001.3743v1, 2010, To appear in J. Operator Theory.
[BS00] B.V.R. Bhat and M. Skeide, Tensor product systems of Hilbert modules and dilations of completely positive semigroups, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3 (2000), 519-575, (Rome, Volterra-Preprint 1999/0370).
[Heo99] J. Heo, Completely multi-positive linear maps and
representations on Hilbert C^{*}-modules, J. Operator Theory 41 (1999), 3-22.
[Pas73] W.L. Paschke, Inner product modules over B^{*}-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468.
[PS72] K.R. Parthasarathy and K. Schmidt, Positive definite kernels, continuous tensor products, and central limit theorems of probability theory, Lect. Notes Math., no. 272, Springer, 1972.
[Ske02] M. Skeide, Dilations, product systems and weak dilations, Math. Notes 71 (2002), 914-923.
[Ske06] _, The index of (white) noises and their product systems, Infin. Dimens. Anal. Quantum Probab. Relat. Top.

9 (2006), 617-655, (Rome, Volterra-Preprint 2001/0458, arXiv: math.OA/0601228).
[Ske09a] \qquad , Classification of E_{0}-semigroups by product systems, Preprint, arXiv: 0901.1798v2, 2009.
[Ske09b] _, Unit vectors, Morita equivalence and endomorphisms, Publ. Res. Inst. Math. Sci. 45 (2009), 475-518, (arXiv: math.OA/0412231v5 (Version 5)).
[Spe98] R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Mem. Amer. Math. Soc., no. 627, American Mathematical Society, 1998.
[SSV07] M. Schürmann, M. Skeide, and S. Volkwardt,

Transformations of Lévy processes, Greifswald-Preprint no.13/2007, arXiv: 0712.3504v2, 2007.

