SOME APPLICATIONS OF HEISENBERG-WEYL OPERATOR CALCULUS AND ORTHOFERMIONS

Philip FEINSILVER ${ }^{1}$ and René SCHOTT 2

[^0]
CONTENTS

Heisenberg-Weyl operator calculus approach to solving differential systems.

Orthofermions and finite-dimensional calculus.

HEISENBERG-WEYL OPERATOR CALCULUS APPROACH TO SOLVING DIFFERENTIAL SYSTEMS

EXAMPLE

$$
f(w)=w^{3} / 3-\alpha w^{2}+w=z
$$

Invert:

$$
w=g(z)
$$

LAGRANGE-BÜRMANN INVERSION THEOREM

$$
f(w)=z
$$

f analytic at a point a and $f^{\prime}(a) \neq 0$.
Then it is possible to invert or solve the equation for w :

$$
w=g(z)
$$

where g is analytic at $b=f(a)$ and

$$
g(z)=a+\left.\sum_{n=1}^{\infty}\left(\frac{d}{d w}\right)^{n-1}\left(\frac{w-a}{f(w)-b}\right)^{n}\right|_{u=a} \frac{(z-b)^{n}}{n!}
$$

AN OPERATOR CALCULUS APPROACH

Acting on polynomials in x, define the operators:

$$
D=\frac{d}{d x}
$$

and

$$
X=\text { multiplication by } x
$$

They satisfy

$$
[D, X]=D X-X D=I
$$

I, identity operator.
D, X generate the Heisenberg-Weyl algebra (HW).
Fix a neighborhood of 0 in \mathbf{C}.

Take an analytic function $V(z)$ defined there, normalized to

$$
\begin{aligned}
& V(0)=0 \\
& V^{\prime}(0)=1
\end{aligned}
$$

Denote

$$
W(z)=1 / V^{\prime}(z)
$$

and $U(v)$ the inverse function, i.e.,

$$
\begin{aligned}
& V(U(v))=v \\
& U(V(z))=z
\end{aligned}
$$

Then $V(D)$ is defined by power series as an operator on polynomials in x and

$$
[V(D), X]=V^{\prime}(D)
$$

so that

$$
[V(D), X W(D)]=1
$$

In other words,

$$
V=V(D)
$$

and $Y=X W(D)$ generate a representation of the HW algebra on polynomials in x.
Basis for the representation:

$$
y_{n}(x)=Y^{n} 1
$$

i.e., Y is a raising operator

$$
V y_{n}=n y_{n-1}
$$

V is the corresponding lowering operator
The operator of multiplication by x is given by

$$
X=Y V^{\prime}(D)=Y U^{\prime}(V)^{-1}
$$

which is a recursion operator for the system. Consider a variable A with corresponding partial differential operator ∂_{A}

Given V as above, let \tilde{Y} be the vector field $\tilde{Y}=W(A) \partial_{A}$. Then:

$$
\tilde{Y} e^{A x}=x W(A) e^{A x}=x W(D) e^{A x}
$$

as any operator function of D acts as a multiplication operator on $e^{A x}$.
Important property: Y and \tilde{Y} commute Iterate:

$$
\begin{equation*}
\exp (t \tilde{Y}) e^{A x}=\exp (t Y) e^{A x} \tag{1}
\end{equation*}
$$

Solve:

$$
\begin{equation*}
\dot{A}=W(A) \tag{2}
\end{equation*}
$$

with initial condition $A(0)=A$, then for any smooth function f,

$$
e^{t \tilde{Y}} f(A)=f(A(t))
$$

Thus

$$
\exp (t Y) e^{A x}=e^{x A(t)}
$$

To solve equation (2), multiply both sides by $V^{\prime}(A)$ and observe that:

$$
V^{\prime}(A) \dot{A}=\frac{d}{d t} V(A(t))=1
$$

Integrate:

$$
V(A(t))=t+V(A) \quad \text { or } \quad A(t)=U(t+V(A))
$$

Writing v for t, we have:

$$
\begin{equation*}
\exp (v Y) e^{A x}=e^{x U(v+V(A))} \tag{3}
\end{equation*}
$$

Set $A=0$:

$$
\exp (v Y) 1=e^{x U(v)}
$$

and

$$
e^{v Y} 1=\sum_{n=0}^{\infty} \frac{v^{n}}{n!} y_{n}(x)
$$

Expansion of the exponential of the inverse function:

$$
e^{x U(v)}=\sum_{n=0}^{\infty} \frac{v^{n}}{n!} y_{n}(x)
$$

or

$$
\begin{equation*}
\sum_{m=0}^{\infty} \frac{x^{m}}{m!}(U(v))^{m}=\sum_{n=0}^{\infty} \frac{v^{n}}{n!} y_{n}(x) . \tag{4}
\end{equation*}
$$

Alternative approach to inversion of the function $V(z)$ rather than using Lagrange's formula.

The coefficient of x^{m} / m ! yields the expansion of $(U(v))^{m}$. $U(v)$ is given by the coefficient of x on the right-hand side.

Theorem

The coefficient of $x^{m} / m!$ in $Y^{n} 1$ is equal to $\left.\tilde{Y}^{n} A^{m}\right|_{A=0}$, each giving the coefficient of $v^{n} / n!$ in the expansion of $U(v)^{m}$.

The same idea works in several variables.

We have

$$
\mathbf{V}(\mathbf{z})=\left(V_{1}\left(z_{1}, \ldots, z_{N}\right), \ldots, V_{N}\left(z_{1}, \ldots, z_{N}\right)\right)
$$

analytic in a neighborhood of 0 in \mathbf{C}^{N}. Jacobian matrix

$$
\left(\frac{\partial V_{i}}{\partial z_{j}}\right)
$$

by V^{\prime} and its inverse by W.
The variables

$$
Y_{i}=\sum_{k=1}^{N} x_{k} W_{k i}(D)
$$

commute and act as raising operators for generating the basis $y_{n}(\mathbf{x})$.

$$
Y_{i} y_{\mathbf{n}}=y_{\mathbf{n}+\mathbf{e}_{i}}
$$

And

$$
\begin{gathered}
V_{i}=V_{i}(\mathbf{D}) \\
\mathbf{D}=\left(D_{1}, \ldots, D_{N}\right)
\end{gathered}
$$

are lowering operators:

$$
V_{i} y_{\mathbf{n}}=n_{i} y_{\mathbf{n}-\mathbf{e}_{i}}
$$

Denote $\sum_{i} a_{i} b_{i}$ by $a \cdot b$. With variables A_{i} and corresponding partials ∂_{i}, define the vector fields

$$
\tilde{Y}_{i}=\sum_{k} W_{k i}(A) \partial_{k}
$$

For a vector field $\tilde{Y}=\sum_{i} W_{i}(A) \partial_{i}$, we have the identities

$$
\tilde{Y} e^{A \cdot x}=x \cdot W(A) e^{A \cdot x}=x \cdot W(D) e^{A \cdot x}
$$

The method of characteristics applies as in one variable and

$$
\exp (v \cdot Y) e^{A \cdot x}=e^{x \cdot U(v+V(A))}
$$

Thus, we have the expansion

$$
\begin{equation*}
\exp (x \cdot U(v))=\sum_{\mathbf{n}} \frac{\mathbf{v}^{\mathbf{n}}}{\mathbf{n}!} y_{\mathbf{n}}(\mathbf{x}) \tag{5}
\end{equation*}
$$

The $k^{\text {th }}$ component, U_{k}, of the inverse function is given by the coefficient of x_{k} in the above expansion.

Important feature of our approach: to get an expansion to a given order requires knowledge of the expansion of W just to that order

This allows for streamlined computations.

For polynomial systems \mathbf{V}, V^{\prime} will have polynomial entries, and W will be rational in \mathbf{z}.

Raising operators will be rational functions of \mathbf{D}, linear in \mathbf{x}.
Thus the coefficients of the expansion of the entries $W_{i j}$ of W are computed by finite-step recurrences.

EXAMPLES

Example 1

Let

$$
V=z^{3} / 3-\alpha z^{2}+z
$$

Then

$$
V^{\prime}=z^{2}-2 \alpha z+1
$$

Thus

$$
W=\frac{1}{1-2 \alpha z+z^{2}}=\sum_{n=0}^{\infty} z^{n} U_{n}(\alpha)
$$

where U_{n} are Chebyshev polynomials of the second kind.

Specializing α provides interesting cases.

For example, let

$$
\alpha=\cos (\pi / 4)
$$

or

$$
V=z^{3} / 3-z^{2} / \sqrt{2}+z
$$

Then the coefficients in the expansion of W are periodic with
period 8 and

$$
W=\frac{1+z^{2}+\sqrt{2} z}{1+z^{4}}
$$

The coefficient of x in the polynomials y_{n} yield the coefficients in the expansion of the inverse U.
Here are some polynomials starting with $y_{0}=1, y_{1}=x$:

$$
\begin{aligned}
& y_{2}=x^{2}+x \sqrt{2}, \quad y_{3}=x^{3}+3 x^{2} \sqrt{2}+4 x, \\
& y_{4}=x^{4}+6 x^{3} \sqrt{2}+22 x^{2}+10 x \sqrt{2}, \\
& y_{5}=x^{5}+10 x^{4} \sqrt{2}+70 x^{3}+90 x^{2} \sqrt{2}+40 x, \\
& y_{6}=x^{6}+15 x^{5} \sqrt{2}+170 x^{4}+420 x^{3} \sqrt{2}+700 x^{2}-140 x \sqrt{2} .
\end{aligned}
$$

This gives to order 6:

$$
U(v)=\left(v+\frac{2}{3} v^{3}+\frac{1}{3} v^{5}+\ldots\right)+\sqrt{2}\left(\frac{1}{2} v^{2}+\frac{5}{12} v^{4}-\frac{7}{36} v^{6}+\ldots\right.
$$

This expansion gives approximate solutions to

$$
z^{3} / 3-z^{2} / \sqrt{2}+z-v=0
$$

for v near 0 .

Eample 2

Inversion of the Chebyshev polynomial

$$
T_{3}(z)=4 z^{3}-3 z
$$

can be used as the basis for solving general cubic equations.
We have, with

$$
\begin{gathered}
V(z)=4 z^{3}-3 z \\
W(z)=\frac{-1}{3} \frac{1}{1-4 z^{2}}=\frac{-1}{3} \sum_{n=0}^{\infty} 4^{n} z^{2 n}
\end{gathered}
$$

So

$$
\begin{aligned}
y_{1} & =(-1 / 3) x \\
y_{2} & =(1 / 9) x^{2}
\end{aligned}
$$

$$
y_{3}=(-1 / 27)\left(x^{3}+8 x\right)
$$

etc. We find

$$
U(v)=-\frac{1}{3} v-\frac{4}{81} v^{3}-\frac{16}{729} v^{5}-\frac{256}{19683} v^{7}-\cdots
$$

In this case, we can find the expansion analytically.
To solve $T_{3}(z)=v$, write

$$
T_{3}(\cos \theta)=\cos (3 \theta)=v
$$

Invert to get, for integer k,

$$
\theta=(1 / 3)(2 \pi k \pm \arccos v)
$$

with arccos denoting the principal branch.
Then

$$
z=\cos ((1 / 3)(2 \pi k \pm \arccos v))
$$

We want a branch with $v=0$ corresponding to $z=0$.

With $\arccos 0=\pi / 2$, we want the argument of the cosine to be $\pi / 2+\pi /$, for some integer l.
This yields the condition

$$
\frac{1}{3}=\frac{2 l+1}{4 k \pm 1}
$$

Taking $I=0$, we get $k=1$, with the minus sign.
Namely,

$$
U(v)=\cos ((1 / 3)(2 \pi-\arccos v))
$$

Use hypergeometric functions and rewrite, we get:

$$
U(v)=-\frac{1}{3} \sum_{n=0}^{\infty}\binom{3 n}{n}\left(\frac{4}{27}\right)^{n} \frac{v^{2 n+1}}{2 n+1}
$$

If we generate the polynomials y_{n}, we find the expansion of $U(v)^{m}$ to any order.

Eample 3

A similar approach is interesting for Chebyshev polynomial $T_{n}(z)$.

$$
F(v)=\cos (\lambda(\mu \pm \arccos v))
$$

satisfies the hypergeometric differential equation

$$
\left(1-v^{2}\right) F^{\prime \prime}-v F^{\prime}+\lambda^{2} F=0
$$

which can be written in the form

$$
\left[\left(v D_{v}\right)^{2}-D_{v}^{2}\right] F=\lambda^{2} F_{0}
$$

with here D_{v} denoting $d / d v$.
For integer λ, this is the differential equation for the corresponding Chebyshev polynomial. In general, these are Chebyshev functions.
For $F(0)=0$, take $\mu=2 \pi k$, we require

$$
\lambda=\frac{2 I+1}{4 k \pm 1}
$$

With $F^{\prime}(0)= \pm \lambda$, we have the solution

$$
F(v)= \pm \lambda v_{2} F_{1}\left(\begin{array}{c|c}
\frac{1+\lambda}{2}, \frac{1-\lambda}{2} & \left.v^{2}\right) .
\end{array}\right.
$$

USING MAPLE

For symbolic computation using Maple, one can use the Ore-Algebra package.

1. First fix the degree of approximation. Expand W as a polynomial to that degree.
2. Declare the Ore algebra with one variable, x, and one derivative, D.
3. Define the operator $x W(D)$ in the algebra.
4. Iterate starting with $y_{0}=1$ using the applyopr command.
5. Extract the coefficient of x^{m} / m ! to get the expansion of $U(v)^{m}$.

ALGORITHM AS A MATRIX COMPUTATION

Fix the order of approximation n.
Cut off the expansion

$$
W(z)=w_{0}+w_{1} z+w_{2} w^{2}+\cdots+w_{k} z^{k}+\cdots
$$

at $w_{n} z^{n}$.
Let the matrix

$$
W=\left(\begin{array}{ccccc}
w_{1} & w_{0} & 0 & \ldots & 0 \\
w_{2} & w_{1} & w_{0} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
w_{n-1} & w_{n-2} & w_{n-3} & \ldots & w_{0} \\
w_{n} & w_{n-1} & w_{n-2} & \ldots & w_{1}
\end{array}\right)
$$

Define the auxiliary diagonal matrices

$$
\begin{aligned}
P & =\left(\begin{array}{cccc}
1! & 0 & \ldots & 0 \\
0 & 2! & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & n!
\end{array}\right), \quad M=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 2 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & n
\end{array}\right), \\
Q & =\left(\begin{array}{cccc}
1 / \Gamma(1) & 0 & \ldots & 0 \\
0 & 1 / \Gamma(2) & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1 / \Gamma(n)
\end{array}\right) .
\end{aligned}
$$

Note that

$$
Q P=M
$$

Denoting

$$
y_{k}(x)=\sum c_{j}^{(k)} x^{j}
$$

we have:

$$
\left[c_{1}^{(k+1)}, c_{2}^{(k+1)}, \ldots, c_{n}^{(k+1)}\right]=\left[c_{1}^{(k)}, c_{2}^{(k)}, \ldots, c_{n}^{(k)}\right] P W Q
$$

The condition $U(0)=0$ gives $y_{0}=1$.
Then $y_{1}=X W(D) y_{0}$ yields $y_{1}=w_{0} x$.
We see that $c_{0}^{(k)}=0$ for $k>0$.
We iterate as follows:

1. Start with w_{0} times the unit vector $[1,0, \ldots, 0]$ of length n.
2. Multiply by W.
3. Iterate, multiplying on the right by $M W$ at each step. 4. Finally, multiply on the right by Q.

The top row gives the coefficients of the expansion of $U(v)$ to order n.

HIGHER ORDER EXAMPLE

$$
\begin{aligned}
& V_{1}=z_{1}+z_{2}^{2} / 2 \\
& V_{2}=z_{2}-z_{1} z_{2}
\end{aligned}
$$

So
$V^{\prime}=\left(\begin{array}{cc}1 & z_{2} \\ -z_{2} & 1-z_{1}\end{array}\right) \quad$ and $\quad W=\frac{1}{1-z_{1}+z_{2}^{2}}\left(\begin{array}{cc}1-z_{1} & -z_{2} \\ z_{2} & 1\end{array}\right)$.
Raising operators

$$
\begin{aligned}
& \left.Y_{1}=\left(x_{1}\left(1-D_{1}\right)\right)+x_{2} D_{2}\right)\left(1-D_{1}+D_{2}^{2}\right)^{-1} \\
& Y_{2}=\left(-x_{1} D_{2}+x_{2}\right)\left(1-D_{1}+D_{2}^{2}\right)^{-1}
\end{aligned}
$$

Expanding

$$
\left(1-D_{1}+D_{2}^{2}\right)^{-1}=\sum_{n=0}^{\infty}\left(D_{1}-D_{2}^{2}\right)^{n}
$$

yields, with $y_{00}=1$,

$$
\begin{gathered}
y_{01}=x_{2}, \quad y_{10}=x_{1} \\
y_{02}=x_{2}^{2}-x_{1}, \quad y_{11}=x_{2}+x_{1} x_{2}, \quad y_{20}=x_{1}^{2}
\end{gathered}
$$

Thus
$\exp (\mathbf{x} \cdot \mathbf{U}(\mathbf{v}))=1+x_{1} v_{1}+x_{2} v_{2}$

$$
+\left(x_{2}+x_{1} x_{2}\right) v_{1} v_{2}+\left(x_{2}^{2}-x_{1}\right) \frac{v_{1}^{2}}{2}+x_{1}^{2} \frac{v_{2}^{2}}{2}+\cdots
$$

SO

$$
\begin{aligned}
& U_{1}(\mathbf{v})=v_{1}-v_{1}^{2} / 2+\cdots \\
& U_{2}(\mathbf{v})=v_{2}+v_{1} v_{2}+\cdots
\end{aligned}
$$

ORTHOFERMIONS and FINITE-DIMENSIONAL CALCULUS

ROTA
The Umbral Calculus (Advances in Mathematics, 1978). Finite Operator Calculus, 1975.

TEKIN, AYDIN, and ARIK
J. Physics A, 2007.

Start with a set of operators

$$
\left\{c_{1}, \ldots, c_{p}\right\}
$$

p a positive integer.
Form the star-algebra generated by the $\left\{c_{i}\right\}$ modulo the following relations

$$
\begin{align*}
c_{i} c_{j} & =0 \\
c_{i} c_{j}^{*}+\delta_{i j} \sum_{k=1}^{p} c_{k}^{*} c_{k} & =\delta_{i j} \mathbf{1} \tag{6}
\end{align*}
$$

1: identity operator.
Set

$$
\Pi=\mathbf{1}-\sum_{k=1}^{p} c_{k}^{*} c_{k}
$$

This last relation writes as:

$$
c_{i} c_{j}^{*}=\delta_{i j} \Pi
$$

and:

$$
\Pi^{2}=\Pi
$$

i.e., Π is a projection. It follows that

$$
\Pi c_{k}=c_{k}
$$

and

$$
c_{i} c_{j}^{*} c_{k}=\delta_{i j} c_{k}
$$

Set

$$
\begin{aligned}
a & =c_{1}+\sum_{k=2}^{p} k c_{k-1}^{*} c_{k} \\
a^{\dagger} & =c_{1}^{*}+\sum_{k=2}^{p} c_{k}^{*} c_{k-1}
\end{aligned}
$$

$$
a a^{\dagger}-a^{\dagger} a=\mathbf{1}-(p+1) c_{p}^{*} c_{p}
$$

and we get:

$$
a a^{\dagger} a-a^{\dagger} a a=a
$$

CALCULUS with MATRICES

Restrict the differentiation operator to the finite-dimensional space of polynomials of degree less than or equal to p. Use the standard basis $\left\{1, x, x^{2}, \ldots, x^{p}\right\}$.
For $p=4$, we have

$$
\hat{D}=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
D X D-X D D=D
$$

The matrix of X for $p=4$,

$$
\hat{X}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Note that

$$
\hat{X}^{p+1}=0
$$

To keep in line with the powers of x, label the basis elements starting from 0
e_{k} : column vector with the only nonzero entry equal to 1 in the $(k+1)^{\text {st }}$ position.

Vacuum state: $\Omega=\mathbf{e}_{0}$, satisfying $\hat{D} \Omega=0$.

And

$$
\hat{X}^{k} \Omega=e_{k}
$$

for $1 \leq k \leq p$
these are raising and lowering operators satisfying

$$
\begin{aligned}
\hat{X} e_{k} & =e_{k+1} \theta_{k p} \\
\hat{D} e_{k} & =k x e_{k-1}
\end{aligned}
$$

where $\theta_{i j}=1$ if $i<j$, zero otherwise.
With the inner product

$$
\left\langle e_{n}, e_{m}\right\rangle=\delta_{n m} n!
$$

we have

$$
\hat{D}^{*}=\hat{X}
$$

Let $E_{i j}$: the standard unit matrices with all but one entry equal to zero, $\left(E_{i j}\right)_{k l}=\delta_{i k} \delta_{j l}, 1 \leq i, j, k, l \leq p+1$.

Connection with orthofermions is given by the $(p+1) \times(p+1)$ matrix realization

$$
\hat{c}_{i}=E_{1 i+1}
$$

for $1 \leq i \leq p$. The orthofermion relations hold and particularly for this realization

$$
\hat{c}_{i}^{*} \hat{c}_{j}=E_{i+1 j+1}
$$

Remark:

$\hat{\Pi}=E_{11}$ and the star-algebra generated by the \hat{c}_{i} is the full matrix algebra.

Theorem

For $p>0$, let D and X be $(p+1) \times(p+1)$ matrices defined
by $D=\sum_{k=1}^{p} k E_{k k+1}, X=\sum_{k=1}^{p} E_{k+1 k}$. Then the Lie algebra
generated by $\{X, D\}$ is $s /(p+1)$.

EXAMPLES

Example 1

The number operator is $X D$.
For $p=4$:

$$
\hat{X} \hat{D}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 4
\end{array}\right)
$$

This operator multiplies \mathbf{e}_{n} by n, for $0 \leq n \leq 4$. In general:

$$
\hat{X} \hat{D}=\sum_{n=0}^{p} n E_{n+1 n+1}
$$

which multiplies \mathbf{e}_{n} by n, for $0 \leq n \leq p$.

Example 2

The Hermite polynomials, occurring in oscillator wave functions, are eigenfunctions of the Ornstein-Uhlenbeck operator, $X D-t D^{2}, t>0$, which for $p=4$ takes the form

$$
\left(\begin{array}{rrrrr}
0 & 0 & -2 t & 0 & 0 \\
0 & 1 & 0 & -6 t & 0 \\
0 & 0 & 2 & 0 & -12 t \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 4
\end{array}\right)
$$

The eigenvector for each eigenvalue $\lambda=0,1,2,3,4$ gives the coefficients of the corresponding polynomial $H_{\lambda}(x, t)$. The family of polynomials $\left\{H_{\lambda}(x, t)\right\}_{\lambda \in \mathbb{N}}$ provide an
orthogonal basis for L^{2} with respect to the Gaussian measure with mean zero and variance t.

Example 3

The translation operator $T_{t}=e^{t D}$ acts on functions as $e^{t D} f(x)=f(x+t)$. For $p=4$,

$$
\hat{T}_{t}=\left(\begin{array}{rrrrr}
1 & t & t^{2} & t^{3} & t^{4} \\
0 & 1 & 2 t & 3 t^{2} & 4 t^{3} \\
0 & 0 & 1 & 3 t & 6 t^{2} \\
0 & 0 & 0 & 1 & 4 t \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

generally, with columns given by binomial coefficients times powers of t, corresponding to the action $x \rightarrow x+t$ on the basis polynomials x^{j}.

The matrix \hat{T}_{t} can be computed as the exponential of $t \hat{D}$ defined as a power series:

$$
\mathbf{1}+t \hat{D}+t^{2} \hat{D}^{2} / 2!+\cdots
$$

Example 4

The Gegenbauer polynomials satisfy

$$
\left[(X D+\alpha)^{2}-D^{2}\right] C_{n}^{\alpha}(x)=(n+\alpha)^{2} C_{n}^{\alpha}(x)
$$

Thus we have the Gegenbauer operator, $G_{\alpha}=(X D+\alpha)^{2}-D^{2}$, which for $p=4$ takes the form

$$
\hat{G}_{\alpha}=\left(\begin{array}{ccccc}
\alpha^{2} & 0 & -2 & 0 & 0 \\
0 & (1+\alpha)^{2} & 0 & -6 & 0 \\
0 & 0 & (2+\alpha)^{2} & 0 & -12 \\
0 & 0 & 0 & (3+\alpha)^{2} & 0 \\
0 & 0 & 0 & 0 & (4+\alpha)^{2}
\end{array}\right)
$$

where the spectrum is evident along the diagonal.

Up to order p, one obtains the Gegenbauer polynomials with coefficients given by the eigenvectors of \hat{G}_{α}.

Multivariable calculus with matrices

Extend to N variables.
For matrices, A, B, the tensor product $A \otimes B$ denotes the Kronecker product of the two matrices.

If A is $n \times n$, and B is $m \times m$, then $A \otimes B$ is $n m \times n m$ with entries formed by replacing each entry $a_{i j}$ in A with the block matrix $a_{i j} B$. For products of more than two matrices, we conventionally associate to the left.

For a fixed p :

$$
(p+1) \times(p+1)
$$

matrices \hat{D} and $\hat{X} \mathrm{I}$: the $(\mathrm{p}+1) \times(p+1)$ identity matrix.
$\hat{D}_{j}=I \otimes I \otimes \cdots \otimes \hat{D} \otimes I \cdots \otimes I$
(\hat{D} in the $j^{\text {th }}$ spot)
$\hat{X}_{j}=I \otimes I \otimes \cdots \otimes \hat{X} \otimes I \cdots \otimes I \quad\left(\hat{X}\right.$ in the $j^{\text {th }}$ spot $)$
\hat{D}_{j} and \hat{X}_{j} satisfy the orthofermion relations while

$$
\left[\hat{D}_{j}, \hat{X}_{i}\right]=\left[\hat{X}_{j}, \hat{X}_{i}\right]=\left[\hat{D}_{j}, \hat{D}_{i}\right]=0
$$

for $i \neq j$

Analytic representations of the HW-algebra. Canonical polynomials

These are infinite-dimensional representations in the sense that they act on a basis for the vector space of polynomials in a given set of variables

$$
\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}
$$

Use of canonical variables which are functions of X and D obeying the HW relations on an infinite-dimensional space, which restricts to the orthofermion relation on spaces of polynomials in x of a given bounded degree.

Notation

We use the convention of summing over repeated Greek indices, irrespective of position.

Given $V: \mathbf{C}^{N} \rightarrow \mathbf{C}^{N}$,
$V(z)=\left(V_{1}\left(z_{1}, \ldots, z_{N}\right), \ldots, V_{N}\left(z_{1}, \ldots, z_{N}\right)\right)$ holomorphic in a neighborhood of the origin, satisfying $V(0)=0$, construct an associated abelian family of dual vector fields.
Corresponding to the operators X_{i} of multiplication by x_{i}, we have the partial differentiation operators, D_{i}.

In this context, a function of $x=\left(x_{1}, \ldots, x_{N}\right), f(x)$, is identified with $f(X) 1$, the operator of multiplication by $f(X)$ acting on the vacuum state 1 , with $D_{i} 1=0$, for all $1 \leq i \leq N$. Define operators

$$
V(D)=\left(V_{1}\left(D_{1}, \ldots, D_{N}\right), \ldots, V_{N}\left(D_{1}, \ldots, D_{N}\right)\right)
$$

These are canonical lowering operators, corresponding to differentiation.

Jacobian:

$$
\left(\frac{\partial V_{i}}{\partial z_{j}}\right)
$$

by $V^{\prime}(z)$, let $W(z)=\left(V^{\prime}(z)\right)^{-1}$, be the inverse (matrix inverse) Jacobian.

The boson commutation relations extend to

$$
\left[V_{i}(D), X_{j}\right]=\frac{\partial V_{i}}{\partial D_{j}}
$$

Define the operators

$$
Y_{i}=X_{\mu} W_{\mu i}(D)
$$

These are canonical raising operators, corresponding to multiplication by X_{i}.

$$
\left[V_{i}, Y_{j}\right]=\delta_{i j} \mathbf{1}
$$

Canonical system of raising and lowering operators:

$$
\begin{gathered}
\left\{Y_{j}\right\} \\
\left\{V_{i}\right\} \\
1 \leq i, j \leq N
\end{gathered}
$$

Essential feature:

$$
\left[Y_{i}, Y_{j}\right]=\left[V_{i}, V_{j}\right]=0
$$

Remark.

Exchanging D with X is a formal Fourier transformation and turns the variables Y_{i} into the vector fields $\tilde{Y}_{i}=W(x)_{\mu i} \frac{\partial}{\partial x_{\mu}}$.
The Y_{i} are dual vector fields .

Notation

Complement the standard notations used along with V and W, letting U denote the inverse function to V. I.e.,

$$
U \circ V=V \circ U=\mathrm{id}
$$

Explicitly:

$$
U(V(z))=z
$$

Since

$$
W=V^{\prime-1}
$$

we have

$$
W(z)=U^{\prime}(V(z))
$$

In other words, converting from z to V acting on functions of the canonical variables Y_{i}, gives the recurrence relation

$$
X=Y U^{\prime}(V)^{-1}
$$

Multi-index notation, $n=\left(n_{1}, \ldots, n_{N}\right)$,

$$
v^{n}=v_{1}^{n_{1}} v_{2}^{n_{2}} \cdots v_{N}^{n_{N}}
$$

Main formula:

$$
\exp \left(v_{\mu} Y_{\mu}\right) 1=\exp x_{\mu} U_{\mu}(v)=\sum_{n \geq 0} \frac{v^{n}}{n!} y_{n}(x)
$$

This expansion defines the canonical polynomials:
$y_{n}(x)=Y^{n} 1$.

Canonical Appell systems

An Appell system, $\left\{h_{n}(x)\right\}$, in one variable is a system of polynomials providing a basis for the vector space of polynomials with

$$
\begin{gathered}
\operatorname{deg} h_{n}=n \\
n=0,1,2 \ldots
\end{gathered}
$$

such that

$$
D h_{n}=n h_{n-1}
$$

Defining the raising operator R by

$$
R h_{n}=h_{n+1}
$$

we have

$$
[D, R]=\mathbf{1}
$$

thus a representation of the HW-algebra.
Introduce a Hamiltonian $H(z)$.
Only requirement: analyticity in a neighborhood of the origin in \mathbb{C}^{N}.

We have the time-evolution:

$$
\exp (-t H(D)) e^{x U(v)}=e^{x U(v)-t H(U(v))}=\sum_{n \geq 0} \frac{v^{n}}{n!} y_{n}(x, t)
$$

An Appell system of polynomials has a generating function of the form

$$
\exp (x z-t H(z))=\sum_{n>0} \frac{z^{n}}{n!} h_{n}(x, t)
$$

For the canonical Appell system we have

$$
\exp (x z-t H(z))=\sum_{n \geq 0} \frac{V(z)^{n}}{n!} y_{n}(x, t)
$$

Take

$$
z=U(v)
$$

which we interpret as changing to canonical variables.
Each of the polynomials $y_{n}(x, t)$ is a solution of the evolution equation:

$$
\frac{\partial u}{\partial t}+H(D) u=0
$$

CANONICAL CALCULUS with MATRICES

First consider the case $N=1$.
$V(z)$ analytic function in a neighborhood of the origin in \mathbb{C}, normalized to $V(0)=0, V^{\prime}(0) \neq 0$.
Let $W(z)=1 / V^{\prime}(z)$ have the Taylor expansion

$$
W(z)=w_{0}+w_{1} z+\cdots+w_{k} z^{k}+\cdots
$$

The corresponding canonical variable is $Y=X W(D)$, satisfying

$$
[V(D), Y]=\mathbf{1}
$$

The canonical basis polynomials are

$$
y_{n}(x)=Y^{n} 1
$$

$n \geq 0$.

Fix the order p.
Let $\hat{W}=W(\hat{D})$.
Employ the algebra generated by the operators

$$
\hat{V}=V(\hat{D})
$$

and

$$
\hat{Y}=\hat{X} \hat{W}
$$

Since

$$
\hat{D}^{p+1}=0
$$

The operators \hat{V} and \hat{W} are polynomials in \hat{D}. Similarly, since

$$
\hat{X}^{p+1}=0
$$

the polynomials $y_{n}(\hat{X})$ are truncated if $n>p$.
For $n \leq p$, the correspondence between the polynomials $y_{n}(x)$ and vectors $\hat{y}_{n}=y_{n}(\hat{X}) \mathbf{e}_{0}$ is exact.
The vector \hat{y}_{n} gives the coefficients of the polynomial $y_{n}(x)$.

Remark.

Up to order p, the operator \hat{X} never acts on a power of x greater than p.

EXAMPLES

Example 1

$$
V(z)=e^{z}-1, \quad U(v)=\log (1+v)
$$

SO

$$
\begin{gathered}
W(z)=e^{-z} \\
Y=X e^{-D}
\end{gathered}
$$

The relation

$$
X=Y U^{\prime}(V)^{-1}
$$

reads

$$
X=Y+Y V
$$

$$
x y_{n}=y_{n+1}+n y_{n}
$$

yielding the recurrence

$$
y_{n+1}=(x-n) y_{n}
$$

for $n>0$.

From $y_{0}=1$, calculate

$$
y_{n}(x)=x(x-1) \cdots(x-n+1)
$$

For $p=4$, with $\hat{Y}=\left(\begin{array}{rrrrr}0 & 0 & 0 & 0 & 0 \\ 1 & -1 & 1 & -1 & 1 \\ 0 & 1 & -2 & 3 & -4 \\ 0 & 0 & 1 & -3 & 6 \\ 0 & 0 & 0 & 1 & -4\end{array}\right)$ we get

$$
\hat{Y}^{2}=\left(\begin{array}{rrrrr}
0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -4 & 8 & -15 \\
1 & -3 & 8 & -20 & 43 \\
0 & 1 & -5 & 18 & -46 \\
0 & 0 & 1 & -7 & 22
\end{array}\right)
$$

$$
\hat{Y}^{3}=\left(\begin{array}{rrrrr}
0 & 0 & 0 & 0 & 0 \\
2 & -6 & 18 & -53 & 126 \\
-3 & 11 & -39 & 130 & -327 \\
1 & -6 & 29 & -116 & 313 \\
0 & 1 & -9 & 46 & -134
\end{array}\right)
$$

$$
\hat{Y}^{4}=\left(\begin{array}{rrrrr}
0 & 0 & 0 & 0 & 0 \\
-6 & 24 & -95 & 345 & -900 \\
11 & -50 & 219 & -845 & 2255 \\
-6 & 35 & -180 & 754 & -2070 \\
1 & -10 & 65 & -300 & 849
\end{array}\right)
$$

$$
\hat{Y}^{5}=\left(\begin{array}{rrrrr}
0 & 0 & 0 & 0 & 0 \\
24 & -119 & 559 & -2244 & 6074 \\
-50 & 269 & -1333 & 5497 & -15016 \\
35 & -215 & 1149 & -4907 & 13559 \\
-10 & 75 & -440 & 1954 & -5466
\end{array}\right)
$$

with the first column giving the coefficients of the corresponding polynomial y_{n}, where, since the leading coefficient equals one, we can see the truncation beginning in this last.

Example 2

Gaussian with drift $\alpha>0$,

$$
V(z)=\alpha z-z^{2} / 2, \quad U(v)=\alpha-\sqrt{\alpha^{2}-2 v}
$$

the minus sign taken in $U(v)$ to have $U(0)=0$.
Then

$$
W(z)=\frac{1}{\alpha-z}
$$

and

$$
\hat{Y}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
\alpha^{-1} & \alpha^{-2} & 2 \alpha^{-3} & 6 \alpha^{-4} & 24 \alpha^{-5} \\
0 & \alpha^{-1} & 2 \alpha^{-2} & 6 \alpha^{-3} & 24 \alpha^{-4} \\
0 & 0 & \alpha^{-1} & 3 \alpha^{-2} & 12 \alpha^{-3} \\
0 & 0 & 0 & \alpha^{-1} & 4 \alpha^{-2}
\end{array}\right)
$$

Powers of \hat{Y} yield the canonical polynomials, the first few of which are

$$
\begin{aligned}
& y_{1}=\frac{x}{\alpha} \\
& y_{2}=\frac{x}{\alpha^{3}}+\frac{x^{2}}{\alpha^{2}} \\
& y_{3}=3 \frac{x}{\alpha^{5}}+3 \frac{x^{2}}{\alpha^{4}}+\frac{x^{3}}{\alpha^{3}} \\
& y_{4}=15 \frac{x}{\alpha^{7}}+15 \frac{x^{2}}{\alpha^{6}}+6 \frac{x^{3}}{\alpha^{5}}+\frac{x^{4}}{\alpha^{4}} \\
& y_{5}=105 \frac{x}{\alpha^{9}}+105 \frac{x^{2}}{\alpha^{8}}+45 \frac{x^{3}}{\alpha^{7}}+10 \frac{x^{4}}{\alpha^{6}}+\frac{x^{5}}{\alpha^{5}}
\end{aligned}
$$

These are a scaled variation of Bessel polynomials and:

$$
U^{\prime}(V)^{-1}=\alpha\left(1-\frac{2 V}{\alpha^{2}}\right)^{1 / 2}
$$

Thus, expanding and rearranging the relation

$$
\begin{aligned}
& \qquad X=Y U^{\prime}(V)^{-1} \\
& \alpha Y=X+\alpha Y\left(\frac{V}{\alpha^{2}}+\frac{1}{2} \frac{V^{2}}{\alpha^{4}}+\frac{1}{2} \frac{V^{3}}{\alpha^{6}}+\frac{5}{8} \frac{V^{4}}{\alpha^{8}}+\frac{7}{8} \frac{V^{5}}{\alpha^{10}}+\frac{21}{16} \frac{V^{6}}{\alpha^{12}}+\frac{3}{1}\right. \\
& \text { which translates to }
\end{aligned}
$$

$$
\begin{aligned}
\alpha y_{n+1} & =x y_{n}+\frac{n}{\alpha} y_{n}+\frac{n(n-1)}{2 \alpha^{3}} y_{n-1}+\frac{n(n-1)(n-2)}{2 \alpha^{5}} y_{n-2}+. \\
& =x y_{n}+\frac{n}{\alpha} y_{n}+\sum_{k=2}^{n}\binom{n}{k} \frac{(2 k-3)!}{\alpha^{2 k-1}} y_{n-k+1}
\end{aligned}
$$

Example 3

LambertW function, \mathcal{W}.
Take

$$
V(z)=z e^{-z}
$$

Then

$$
U(v)=-\mathcal{W}(-v)
$$

$$
Y=X e^{D}(I-D)^{-1}
$$

and with $p=7$ the corresponding matrix

$$
\hat{Y}=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 5 & 16 & 65 & 326 & 1957 & 13700 \\
0 & 1 & 4 & 15 & 64 & 325 & 1956 & 13699 \\
0 & 0 & 1 & 6 & 30 & 160 & 975 & 6846 \\
0 & 0 & 0 & 1 & 8 & 50 & 320 & 2275 \\
0 & 0 & 0 & 0 & 1 & 10 & 75 & 560 \\
0 & 0 & 0 & 0 & 0 & 1 & 12 & 105 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 14
\end{array}\right)
$$

One can show that

$$
y_{n}=x(x+n)^{n-1}
$$

and that the relation $X=Y U^{\prime}(V)^{-1}$ leads to the recurrence

$$
y_{n+1}=(x+2 n) y_{n}+\sum_{k=1}^{n-1}\binom{n}{k+1} k^{k} y_{n-k}
$$

THANKS!

[^0]: ${ }^{1}$ Southern Illinois University at Carbondale, USA
 ${ }^{2}$ University Henri Poincaré, Nancy, France

