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HEISENBERG-WEYL OPERATOR CALCULUS
APPROACH TO SOLVING DIFFERENTIAL SYSTEMS

EXAMPLE

f (w) = w 3/3− αw 2 + w = z

Invert:
w = g(z)



LAGRANGE-BÜRMANN INVERSION
THEOREM

f (w) = z

f analytic at a point a and f
′
(a) 6= 0.

Then it is possible to invert or solve the equation for w :

w = g(z)

where g is analytic at b = f (a) and

g(z) = a +
∞∑

n=1

(
d

dw
)n−1(

w − a

f (w)− b
)n |u=a

(z − b)n

n!



AN OPERATOR CALCULUS APPROACH

Acting on polynomials in x , define the operators:

D =
d

dx

and
X = multiplication by x

They satisfy
[D, X ] = DX − XD = I

I , identity operator.
D, X generate the Heisenberg-Weyl algebra (HW).

Fix a neighborhood of 0 in C.



Take an analytic function V (z) defined there, normalized to

V (0) = 0

V ′(0) = 1

Denote
W (z) = 1/V ′(z)

and U(v) the inverse function, i.e.,

V (U(v)) = v

U(V (z)) = z

Then V (D) is defined by power series as an operator on
polynomials in x and

[V (D), X ] = V ′(D)

so that
[V (D), XW (D)] = I



In other words,

V = V (D)

and Y = XW (D) generate a representation of the HW algebra
on polynomials in x .
Basis for the representation:

yn(x) = Y n1

i.e., Y is a raising operator

Vyn = n yn−1

V is the corresponding lowering operator
The operator of multiplication by x is given by

X = YV ′(D) = YU ′(V )−1

which is a recursion operator for the system. Consider a
variable A with corresponding partial differential operator ∂A.



Given V as above, let Ỹ be the vector field Ỹ = W (A)∂A.
Then:

Ỹ eAx = xW (A) eAx = xW (D) eAx

as any operator function of D acts as a multiplication operator
on eAx .
Important property: Y and Ỹ commute
Iterate:

exp(tỸ )eAx = exp(tY )eAx . (1)

Solve:

Ȧ = W (A) (2)

with initial condition A(0) = A, then for any smooth function
f ,

etỸ f (A) = f (A(t)).

Thus

exp(tY )eAx = exA(t).



To solve equation (2), multiply both sides by V ′(A) and
observe that:

V ′(A) Ȧ =
d

dt
V (A(t)) = 1.

Integrate:

V (A(t)) = t + V (A) or A(t) = U(t + V (A)).

Writing v for t, we have:

exp(vY )eAx = exU(v+V (A)). (3)

Set A = 0:

exp(vY )1 = exU(v)

and

evY 1 =
∞∑

n=0

vn

n!
yn(x).



Expansion of the exponential of the inverse function:

exU(v) =
∞∑

n=0

vn

n!
yn(x)

or
∞∑

m=0

xm

m!
(U(v))m =

∞∑
n=0

vn

n!
yn(x). (4)

Alternative approach to inversion of the function V (z) rather
than using Lagrange’s formula.

The coefficient of xm/m! yields the expansion of (U(v))m.
U(v) is given by the coefficient of x on the right-hand side.

Theorem
The coefficient of xm/m! in Y n1 is equal to Ỹ nAm

∣∣
A=0

, each
giving the coefficient of vn/n! in the expansion of U(v)m.



The same idea works in several variables.

We have

V(z) = (V1(z1, . . . , zN), . . . , VN(z1, . . . , zN))

analytic in a neighborhood of 0 in CN .
Jacobian matrix

(
∂Vi

∂zj
)

by V ′ and its inverse by W .
The variables

Yi =
N∑

k=1

xkWki(D)

commute and act as raising operators for generating the basis
yn(x).



Yiyn = yn+ei

And
Vi = Vi(D)

D = (D1, . . . , DN)

are lowering operators:

Viyn = ni yn−ei

Denote
∑

i aibi by a · b. With variables Ai and corresponding
partials ∂i , define the vector fields

Ỹi =
∑

k

Wki(A)∂k .

For a vector field Ỹ =
∑

i Wi(A)∂i , we have the identities

Ỹ eA·x = x ·W (A) eA·x = x ·W (D) eA·x



The method of characteristics applies as in one variable and

exp(v · Y )eA·x = ex ·U(v+V (A)).

Thus, we have the expansion

exp(x · U(v)) =
∑

n

vn

n!
yn(x). (5)

The k th component, Uk , of the inverse function is given by the
coefficient of xk in the above expansion.



Important feature of our approach: to get an expansion
to a given order requires knowledge of the expansion of
W just to that order

This allows for streamlined computations.



For polynomial systems V, V ′ will have polynomial entries,
and W will be rational in z.

Raising operators will be rational functions of D, linear in x.

Thus the coefficients of the expansion of the entries Wij of W
are computed by finite-step recurrences.



EXAMPLES

Example 1

Let
V = z3/3− αz2 + z

Then

V ′ = z2 − 2αz + 1

Thus

W =
1

1− 2αz + z2
=

∞∑
n=0

znUn(α),



where Un are Chebyshev polynomials of the second kind.

Specializing α provides interesting cases.

For example, let
α = cos(π/4)

or
V = z3/3− z2/

√
2 + z

Then the coefficients in the expansion of W are periodic with

period 8 and

W =
1 + z2 +

√
2 z

1 + z4



The coefficient of x in the polynomials yn yield the coefficients
in the expansion of the inverse U .
Here are some polynomials starting with y0 = 1, y1 = x :

y2 = x2 + x
√

2, y3 = x3 + 3 x2
√

2 + 4 x ,

y4 = x4 + 6 x3
√

2 + 22 x2 + 10 x
√

2,

y5 = x5 + 10 x4
√

2 + 70 x3 + 90 x2
√

2 + 40 x ,

y6 = x6 + 15 x5
√

2 + 170 x4 + 420 x3
√

2 + 700 x2 − 140 x
√

2.

This gives to order 6:

U(v) =

(
v +

2

3
v 3 +

1

3
v 5 + . . .

)
+
√

2

(
1

2
v 2 +

5

12
v 4 − 7

36
v 6 + . . .

)
This expansion gives approximate solutions to

z3/3− z2/
√

2 + z − v = 0

for v near 0.



Eample 2
Inversion of the Chebyshev polynomial

T3(z) = 4z3 − 3z

can be used as the basis for solving general cubic equations.
We have, with

V (z) = 4z3 − 3z

W (z) =
−1

3

1

1− 4z2
=
−1

3

∞∑
n=0

4nz2n

So

y1 = (−1/3)x

y2 = (1/9)x2



y3 = (−1/27)(x3 + 8x)

, etc. We find

U(v) = −1

3
v − 4

81
v 3 − 16

729
v 5 − 256

19683
v 7 − · · ·

In this case, we can find the expansion analytically.
To solve T3(z) = v , write

T3(cos θ) = cos(3θ) = v

Invert to get, for integer k ,

θ = (1/3)(2πk ± arccos v)

with arccos denoting the principal branch.
Then

z = cos((1/3)(2πk ± arccos v))

We want a branch with v = 0 corresponding to z = 0.



With arccos 0 = π/2, we want the argument of the cosine to
be π/2 + πl , for some integer l .
This yields the condition

1

3
=

2l + 1

4k ± 1

Taking l = 0, we get k = 1, with the minus sign.
Namely,

U(v) = cos((1/3)(2π − arccos v))

Use hypergeometric functions and rewrite, we get:

U(v) = −1

3

∞∑
n=0

(
3n

n

)
(

4

27
)n v 2n+1

2n + 1
.

If we generate the polynomials yn, we find the expansion of
U(v)m to any order.



Eample 3

A similar approach is interesting for Chebyshev polynomial
Tn(z).

F (v) = cos(λ(µ± arccos v))

satisfies the hypergeometric differential equation

(1− v 2) F ′′ − v F ′ + λ2 F = 0

which can be written in the form

[(vDv)
2 − D2

v ]F = λ2 F



with here Dv denoting d/dv .
For integer λ, this is the differential equation for the
corresponding Chebyshev polynomial.
In general, these are Chebyshev functions.
For F (0) = 0, take µ = 2πk , we require

λ =
2l + 1

4k ± 1

With F ′(0) = ±λ, we have the solution

F (v) = ±λv 2F1

(
1+λ

2
, 1−λ

2
3
2

∣∣∣∣∣ v 2

)
.



USING MAPLE
For symbolic computation using Maple, one can use the
Ore-Algebra package.

1. First fix the degree of approximation. Expand W as
a polynomial to that degree.

2. Declare the Ore algebra with one variable, x, and
one derivative, D.

3. Define the operator xW (D) in the algebra.

4. Iterate starting with y0 = 1 using the applyopr
command.

5. Extract the coefficient of xm/m! to get the
expansion of U(v)m.



ALGORITHM AS A MATRIX COMPUTATION
Fix the order of approximation n.
Cut off the expansion

W (z) = w0 + w1z + w2w
2 + · · ·+ wkz

k + · · ·

at wnz
n.

Let the matrix

W =


w1 w0 0 . . . 0
w2 w1 w0 . . . 0
...

...
...

. . .
...

wn−1 wn−2 wn−3 . . . w0

wn wn−1 wn−2 . . . w1

 .



Define the auxiliary diagonal matrices

P =


1! 0 . . . 0
0 2! . . . 0
...

...
. . .

...
0 0 . . . n!

 , M =


1 0 . . . 0
0 2 . . . 0
...

...
. . .

...
0 0 . . . n

 ,

Q =


1/Γ(1) 0 . . . 0

0 1/Γ(2) . . . 0
...

...
. . .

...
0 0 . . . 1/Γ(n)

 .

Note that
QP = M

Denoting

yk(x) =
∑

c
(k)
j x j

we have:

[c
(k+1)
1 , c

(k+1)
2 , . . . , c (k+1)

n ] = [c
(k)
1 , c

(k)
2 , . . . , c (k)

n ]PWQ



The condition U(0) = 0 gives y0 = 1.

Then y1 = XW (D)y0 yields y1 = w0x .

We see that c
(k)
0 = 0 for k > 0.

We iterate as follows:

1. Start with w0 times the unit vector [1, 0, . . . , 0] of
length n.
2. Multiply by W .
3. Iterate, multiplying on the right by MW at each step.
4. Finally, multiply on the right by Q.

The top row gives the coefficients of the expansion of U(v) to
order n.



HIGHER ORDER EXAMPLE

V1 = z1 + z2
2/2

V2 = z2 − z1z2

So

V ′ =

(
1 z2

−z2 1− z1

)
and W =

1

1− z1 + z2
2

(
1− z1 −z2

z2 1

)
.

Raising operators



Y1 =
(
x1(1− D1)) + x2D2

)
(1− D1 + D2

2 )−1

Y2 = (−x1D2 + x2) (1− D1 + D2
2 )−1

Expanding

(1− D1 + D2
2 )−1 =

∞∑
n=0

(D1 − D2
2 )n

yields, with y00 = 1,

y01 = x2, y10 = x1,

y02 = x2
2 − x1, y11 = x2 + x1x2, y20 = x2

1 .

Thus



exp
(
x ·U(v)

)
= 1 + x1v1 + x2v2

+ (x2 + x1x2)v1v2 + (x2
2 − x1)

v 2
1

2
+ x2

1

v 2
2

2
+ · · · ,

so

U1(v) = v1 − v 2
1 /2 + · · ·

U2(v) = v2 + v1v2 + · · ·



ORTHOFERMIONS and FINITE-DIMENSIONAL
CALCULUS

ROTA
The Umbral Calculus (Advances in Mathematics, 1978).
Finite Operator Calculus, 1975.

TEKIN, AYDIN, and ARIK
J. Physics A, 2007.



Start with a set of operators

{c1, . . . , cp}

p a positive integer.
Form the star-algebra generated by the {ci} modulo the
following relations

cicj = 0

cic
∗
j + δij

p∑
k=1

c∗k ck = δij 1 (6)

1: identity operator.
Set

Π = 1−
p∑

k=1

c∗k ck



This last relation writes as:

cic
∗
j = δij Π

and:
Π2 = Π

i.e., Π is a projection . It follows that

Πck = ck

and

cic
∗
j ck = δij ck

Set

a = c1 +

p∑
k=2

k c∗k−1ck

a† = c∗1 +

p∑
k=2

c∗k ck−1



aa† − a†a = 1− (p + 1) c∗pcp

and we get:
aa†a − a†aa = a



CALCULUS with MATRICES

Restrict the differentiation operator to the finite-dimensional
space of polynomials of degree less than or equal to p.
Use the standard basis {1, x , x2, . . . , xp}.
For p = 4, we have

D̂ =



0 1 0 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 4

0 0 0 0 0


DXD − XDD = D



The matrix of X for p = 4,

X̂ =



0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0


Note that

X̂ p+1 = 0

To keep in line with the powers of x , label the basis elements
starting from 0

ek : column vector with the only nonzero entry equal to 1 in
the (k + 1)st position.

Vacuum state: Ω = e0, satisfying D̂Ω = 0.



And
X̂ kΩ = ek

for 1 ≤ k ≤ p

these are raising and lowering operators satisfying

X̂ ek = ek+1θkp

D̂ek = kxek−1

where θij = 1 if i < j , zero otherwise.
With the inner product

〈en, em〉 = δnm n!

we have
D̂∗ = X̂

Let Eij : the standard unit matrices with all but one entry equal
to zero, (Eij)kl = δikδjl , 1 ≤ i , j , k , l ≤ p + 1.



Connection with orthofermions is given by the
(p + 1)× (p + 1) matrix realization

ĉi = E1 i+1

for 1 ≤ i ≤ p. The orthofermion relations hold and particularly
for this realization

ĉ∗i ĉj = Ei+1 j+1

Remark:
Π̂ = E11 and the star-algebra generated by the ĉi is the full
matrix algebra.



Theorem
For p > 0, let D and X be (p + 1)× (p + 1) matrices defined

by D =

p∑
k=1

k Ek k+1, X =

p∑
k=1

Ek+1 k . Then the Lie algebra

generated by {X , D} is sl(p + 1).



EXAMPLES

Example 1

The number operator is XD.
For p = 4:

X̂ D̂ =



0 0 0 0 0

0 1 0 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 4





This operator multiplies en by n, for 0 ≤ n ≤ 4.
In general:

X̂ D̂ =

p∑
n=0

n En+1 n+1

which multiplies en by n, for 0 ≤ n ≤ p.



Example 2

The Hermite polynomials, occurring in oscillator wave
functions, are eigenfunctions of the Ornstein-Uhlenbeck
operator , XD − tD2, t > 0, which for p = 4 takes the form

0 0 −2t 0 0

0 1 0 −6t 0

0 0 2 0 −12t

0 0 0 3 0

0 0 0 0 4


The eigenvector for each eigenvalue λ = 0, 1, 2, 3, 4 gives the
coefficients of the corresponding polynomial Hλ(x , t).
The family of polynomials {Hλ(x , t)}λ∈N provide an



orthogonal basis for L2 with respect to the Gaussian measure
with mean zero and variance t.



Example 3

The translation operator Tt = etD acts on functions as
etD f (x) = f (x + t). For p = 4,

T̂t =



1 t t2 t3 t4

0 1 2t 3t2 4t3

0 0 1 3t 6t2

0 0 0 1 4t

0 0 0 0 1


generally, with columns given by binomial coefficients times
powers of t, corresponding to the action x → x + t on the
basis polynomials x j .



The matrix T̂t can be computed as the exponential of tD̂
defined as a power series:

1 + tD̂ + t2D̂2/2! + · · ·



Example 4

The Gegenbauer polynomials satisfy

[(XD + α)2 − D2]Cα
n (x) = (n + α)2 Cα

n (x)

Thus we have the Gegenbauer operator,
Gα = (XD + α)2 − D2, which for p = 4 takes the form

Ĝα =



α2 0 −2 0 0

0 (1 + α)2 0 −6 0

0 0 (2 + α)2 0 −12

0 0 0 (3 + α)2 0

0 0 0 0 (4 + α)2


where the spectrum is evident along the diagonal.



Up to order p, one obtains the Gegenbauer polynomials with
coefficients given by the eigenvectors of Ĝα.



Multivariable calculus with matrices

Extend to N variables.
For matrices, A, B , the tensor product A⊗ B denotes the
Kronecker product of the two matrices.

If A is n × n, and B is m ×m, then A⊗ B is nm × nm with
entries formed by replacing each entry aij in A with the block
matrix aijB . For products of more than two matrices, we
conventionally associate to the left.

For a fixed p:
(p + 1)× (p + 1)

matrices D̂ and X̂ I: the(p+1)×(p + 1) identity matrix.

D̂j = I ⊗ I ⊗ · · · ⊗ D̂ ⊗ I · · · ⊗ I (D̂ in the j th spot)

X̂j = I ⊗ I ⊗ · · · ⊗ X̂ ⊗ I · · · ⊗ I (X̂ in the j th spot)



D̂j and X̂j satisfy the orthofermion relations while

[D̂j , X̂i ] = [X̂j , X̂i ] = [D̂j , D̂i ] = 0

for i 6= j



Analytic representations of the HW-algebra. Canonical
polynomials

These are infinite-dimensional representations in the sense that
they act on a basis for the vector space of polynomials in a
given set of variables

{x1, x2, . . . , xN}

Use of canonical variables which are functions of X and D
obeying the HW relations on an infinite-dimensional space,
which restricts to the orthofermion relation on spaces of
polynomials in x of a given bounded degree.

Notation
We use the convention of summing over repeated Greek
indices, irrespective of position.



Given V : CN → CN ,
V (z) = (V1(z1, . . . , zN), . . . , VN(z1, . . . , zN)) holomorphic in a
neighborhood of the origin, satisfying V (0) = 0, construct an
associated abelian family of dual vector fields.
Corresponding to the operators Xi of multiplication by xi , we
have the partial differentiation operators, Di .

In this context, a function of x = (x1, . . . , xN), f (x), is
identified with f (X )1, the operator of multiplication by f (X )
acting on the vacuum state 1, with Di1 = 0, for all 1 ≤ i ≤ N .
Define operators

V (D) = (V1(D1, . . . , DN), . . . , VN(D1, . . . , DN))

These are canonical lowering operators, corresponding to
differentiation.



Jacobian: (
∂Vi

∂zj

)
by V ′(z), let W (z) = (V ′(z))−1, be the inverse (matrix
inverse) Jacobian.

The boson commutation relations extend to

[Vi(D), Xj ] =
∂Vi

∂Dj

Define the operators

Yi = XµWµi(D)

These are canonical raising operators, corresponding to
multiplication by Xi .

[Vi , Yj ] = δij1



Canonical system of raising and lowering operators:

{Yj}

{Vi}

1 ≤ i , j ≤ N

Essential feature:

[Yi , Yj ] = [Vi , Vj ] = 0

Remark.

Exchanging D with X is a formal Fourier transformation and

turns the variables Yi into the vector fields Ỹi = W (x)µi
∂

∂xµ

.

The Yi are dual vector fields .



Notation

Complement the standard notations used along with V and
W , letting U denote the inverse function to V . I.e.,

U ◦ V = V ◦ U = id

Explicitly:
U(V (z)) = z

Since
W = V ′−1

we have
W (z) = U ′(V (z))

In other words, converting from z to V acting on functions of
the canonical variables Yi , gives the recurrence relation

X = Y U ′(V )−1



Multi-index notation, n = (n1, . . . , nN),

vn = vn1
1 vn2

2 · · · vnN
N

Main formula:

exp(vµYµ) 1 = exp xµUµ(v) =
∑
n≥0

vn

n!
yn(x)

This expansion defines the canonical polynomials:
yn(x) = Y n 1.



Canonical Appell systems

An Appell system, {hn(x)}, in one variable is a system of
polynomials providing a basis for the vector space of
polynomials with

deg hn = n

n = 0, 1, 2 . . .

such that
Dhn = nhn−1

Defining the raising operator R by

Rhn = hn+1



we have
[D, R] = 1

thus a representation of the HW-algebra.

Introduce a Hamiltonian H(z).

Only requirement: analyticity in a neighborhood of the origin
in CN .

We have the time-evolution:

exp
(
−tH(D)

)
exU(v) = exU(v)−tH(U(v)) =

∑
n≥0

vn

n!
yn(x , t)

An Appell system of polynomials has a generating function of
the form

exp
(
xz − tH(z)

)
=
∑
n≥0

zn

n!
hn(x , t)



For the canonical Appell system we have

exp
(
xz − tH(z)

)
=
∑
n≥0

V (z)n

n!
yn(x , t)

Take
z = U(v)

which we interpret as changing to canonical variables.

Each of the polynomials yn(x , t) is a solution of the evolution
equation:

∂u

∂t
+ H(D) u = 0



CANONICAL CALCULUS with MATRICES

First consider the case N = 1.

V (z) analytic function in a neighborhood of the origin in C,
normalized to V (0) = 0, V ′(0) 6= 0.
Let W (z) = 1/V ′(z) have the Taylor expansion

W (z) = w0 + w1z + · · ·+ wkz
k + · · ·

The corresponding canonical variable is Y = XW (D),
satisfying

[V (D), Y ] = 1

The canonical basis polynomials are

yn(x) = Y n1

n ≥ 0.



Fix the order p.
Let Ŵ = W (D̂).
Employ the algebra generated by the operators

V̂ = V (D̂)

and
Ŷ = X̂ Ŵ

Since
D̂p+1 = 0

The operators V̂ and Ŵ are polynomials in D̂.
Similarly, since

X̂ p+1 = 0

the polynomials yn(X̂ ) are truncated if n > p.
For n ≤ p, the correspondence between the polynomials yn(x)
and vectors ŷn = yn(X̂ )e0 is exact.
The vector ŷn gives the coefficients of the polynomial yn(x).



Remark.
Up to order p, the operator X̂ never acts on a power of x
greater than p.



EXAMPLES

Example 1

V (z) = ez − 1 , U(v) = log(1 + v)

so
W (z) = e−z

Y = Xe−D

The relation
X = YU ′(V )−1

reads
X = Y + YV



or

xyn = yn+1 + nyn

yielding the recurrence

yn+1 = (x − n)yn

for n > 0.

From y0 = 1, calculate

yn(x) = x(x − 1) · · · (x − n + 1) .



For p = 4, with Ŷ =



0 0 0 0 0

1 −1 1 −1 1

0 1 −2 3 −4

0 0 1 −3 6

0 0 0 1 −4


we get

Ŷ 2 =



0 0 0 0 0

−1 2 −4 8 −15

1 −3 8 −20 43

0 1 −5 18 −46

0 0 1 −7 22





Ŷ 3 =



0 0 0 0 0

2 −6 18 −53 126

−3 11 −39 130 −327

1 −6 29 −116 313

0 1 −9 46 −134



Ŷ 4 =



0 0 0 0 0

−6 24 −95 345 −900

11 −50 219 −845 2255

−6 35 −180 754 −2070

1 −10 65 −300 849





and

Ŷ 5 =



0 0 0 0 0

24 −119 559 −2244 6074

−50 269 −1333 5497 −15016

35 −215 1149 −4907 13559

−10 75 −440 1954 −5466


with the first column giving the coefficients of the
corresponding polynomial yn, where, since the leading
coefficient equals one, we can see the truncation beginning in
this last.



Example 2

Gaussian with drift α > 0,

V (z) = αz − z2/2 , U(v) = α−
√

α2 − 2v

the minus sign taken in U(v) to have U(0) = 0.
Then

W (z) =
1

α− z
and

Ŷ =



0 0 0 0 0

α−1 α−2 2 α−3 6 α−4 24 α−5

0 α−1 2 α−2 6 α−3 24 α−4

0 0 α−1 3 α−2 12 α−3

0 0 0 α−1 4 α−2





Powers of Ŷ yield the canonical polynomials, the first few of
which are

y1 =
x

α

y2 =
x

α3
+

x2

α2

y3 = 3
x

α5
+ 3

x2

α4
+

x3

α3

y4 = 15
x

α7
+ 15

x2

α6
+ 6

x3

α5
+

x4

α4

y5 = 105
x

α9
+ 105

x2

α8
+ 45

x3

α7
+ 10

x4

α6
+

x5

α5

These are a scaled variation of Bessel polynomials and:

U ′(V )−1 = α

(
1− 2V

α2

)1/2



Thus, expanding and rearranging the relation

X = YU ′(V )−1

αY = X+αY

(
V

α2
+

1

2

V 2

α4
+

1

2

V 3

α6
+

5

8

V 4

α8
+

7

8

V 5

α10
+

21

16

V 6

α12
+

33

16

V 7

α14
+ . . .

)
which translates to

α yn+1 = xyn +
n

α
yn +

n(n − 1)

2α3
yn−1 +

n(n − 1)(n − 2)

2α5
yn−2 + . . .

= xyn +
n

α
yn +

n∑
k=2

(
n

k

)
(2k − 3)!

α2k−1
yn−k+1



Example 3

LambertW function, W .
Take

V (z) = ze−z

Then

U(v) = −W(−v)

Y = XeD(I − D)−1



and with p = 7 the corresponding matrix

Ŷ =



0 0 0 0 0 0 0 0

1 2 5 16 65 326 1957 13700

0 1 4 15 64 325 1956 13699

0 0 1 6 30 160 975 6846

0 0 0 1 8 50 320 2275

0 0 0 0 1 10 75 560

0 0 0 0 0 1 12 105

0 0 0 0 0 0 1 14


One can show that

yn = x(x + n)n−1



and that the relation X = YU ′(V )−1 leads to the recurrence

yn+1 = (x + 2n)yn +
n−1∑
k=1

(
n

k + 1

)
kk yn−k .



THANKS!


