Noncommutative Poisson Boundaries

Masaki Izumi izumi@math.kyoto-u.ac.jp

Graduate School of Science, Kyoto University

August, 2010 at Bangalore

The Kyoto Journal of Mathematics,

formerly titled the Journal of Mathematics of Kyoto University, renewed its editorial board inviting external editors. It has been published from Duke University Press since volume 50, 2010.

Please visit http://www.math.kyoto-u.ac.jp/journal/ for more information.

Your submission to KJM is welcome!

Let $H^{\infty}(D)$ be the set of bounded harmonic functions of the unit disk $D = \{z \in \mathbb{C} \mid |z| < 1\}$, which is a closed subspace of $L^{\infty}(D)$. The classical Poisson integral formula

$$f(re^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - r^2}{1 - 2r\cos(\theta - \varphi) + r^2} \tilde{f}(e^{i\varphi}) d\varphi,$$

shows that the map $H^{\infty}(D) \ni f \mapsto \tilde{f} \in L^{\infty}(\partial D)$ is an isometry.

 $H^{\infty}(D)$ has a hidden algebra structure.

Where does it come from?

<u>Answer</u>

It comes from the heat semigroup $\{P_t\}_{t\geq 0}$ acting on $L^{\infty}(D)$, where $P_t = e^{t\Delta}$ and Δ is the Laplacian with respect to the Poincare metric.

 $H^{\infty}(D)$ is nothing but the set of fixed points $\{f \in L^{\infty}(D) \mid P_t(f) = f, \forall t > 0\}.$

The von Neumann algebra structure of $L^{\infty}(\partial D)$ can been seen from the pair $(L^{\infty}(D), \{P_t\}_{t\geq 0})$.

For $f,g \in H^{\infty}(D)$,

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T P_t(fg) dt$$

gives the hidden product of f and g.

The space of harmonic elements

Definition

A Markov operator P on a von Neumann algebra M is a unital normal completely positive map from M to itself. For a Markov operator P on M, set $H^{\infty}(M, P) = \{x \in M \mid P(x) = x\}.$

 $H^{\infty}(M, P)$ is an operator system, i.e., it is a self-adjoint subspace of M containing scalars, though it is not an algebra in general. Choose $\omega \in \beta \mathbb{N} \setminus \mathbb{N}$, and set

$$E_{\omega}(x) = \mathbf{w} - \lim_{n \to \omega} \frac{1}{N} \sum_{n=0}^{n-1} P^n(x), \quad x \in M.$$

 $E_{\omega}: M \to H^{\infty}(M,P)$ is a completely positive projection.

Theorem (Choi-Effros 77)

Let M be a von Neumann algebra, and let $X \subset M$ be a weakly closed operator system.

If there exists a completely positive projection $E: M \to X$, X is a von Neumann algebra with respect to the product $x \circ y = E(xy)$.

 $H^{\infty}(M, P)$ is a von Neumann algebra with the Choi-Effros product $x \circ y = E_{\omega}(xy)$, which does not depend on $\omega \in \beta \mathbb{N} \setminus \mathbb{N}$.

Definition

A concrete realization of the von Neumann algebra structure of $H^{\infty}(M, P)$ is called the noncommutative Poisson boundary for (M, P).

Example

Let S be the unilateral shift on $\ell^2(\mathbb{Z}_+)$. Let $P(x) = S^*xS$ for $x \in B(\ell^2(\mathbb{Z}_+))$. P is a Markov operator acting on $B(\ell^2(\mathbb{Z}_+))$.

Then

$$H^{\infty}(B(\ell^2(\mathbb{Z}_+)), P) = \{T_f \mid f \in L^{\infty}(\mathbb{T})\},\$$

where T_f is the Toeplitz operator with symbol f(identify $\ell^2(\mathbb{Z}_+)$ with the Hardy space $H^2(\mathbb{T})$).

The noncommutative Poisson boundary for $(B(\ell^2(\mathbb{Z}+)), P)$ is $L^{\infty}(\mathbb{T})$.

Let Γ be a discrete group, and let μ be a probability measure on Γ whose support generate Γ as a semigroup.

For $f \in \ell^{\infty}(\Gamma)$, set $P_{\mu}(f) = f * \mu$. Transition probability: $p(g,h) = \mu\{g^{-1}h\}$.

Since $\ell^{\infty}(\Gamma)$ is commutative, the Choi-Effros product on $H^{\infty}(\Gamma,\mu) := H^{\infty}(\ell^{\infty}(\Gamma), P_{\mu})$ is commutative too. There exists a completely positive isometry θ from $H^{\infty}(\Gamma,\mu)$ onto an abelian von Neumann algebra A satisfying $\theta(f \circ g) = \theta(f)\theta(g)$.

If $f \in H^{\infty}(\Gamma, \mu)$ is non-negative and f(e) = 0, the mean-value property of f implies f = 0. $A \ni \varphi \mapsto \theta^{-1}(\varphi)(e) \in \mathbb{C}$ is a faithful normal state. There exists a probability space (Ω, ν) with $A = L^{\infty}(\Omega, \nu)$ satisfying

$$f(e) = \int_{\Omega} \theta(f)(\omega) d\nu(\omega), \quad \forall f \in H^{\infty}(\Gamma, \mu).$$

For $H^{\infty}(\Gamma, \nu)$, we set $\alpha_{\gamma} f(\sigma) = f(\gamma^{-1}\sigma)$. Since α_{γ} commutes with P_{μ} , α_{γ} induces an automorphism $\tilde{\alpha}_{\gamma}$ of $L^{\infty}(\Omega, \nu)$, and hence a Γ -action on (Ω, ν) by nonsingular transformations.

 $\theta(\alpha_{\gamma}(f))(\omega) = \theta(f)(\gamma^{-1} \cdot \omega).$

 (Ω, ν) is called the Poisson boundary for (Γ, μ) .

Poisson integral formula

For $f \in H^{\infty}(\Gamma, \mu)$,

$$f(\gamma) = \alpha_{\gamma^{-1}}(f)(e)$$

= $\int_{\Omega} \theta(\alpha_{\gamma^{-1}}(f))(\omega)d\nu(\omega)$
= $\int_{\Omega} \theta(f)(\gamma \cdot \omega)d\nu(\omega)$
= $\int_{\Omega} \frac{d\nu(\gamma^{-1} \cdot)}{d\nu}(\omega)\theta(f)(\omega)d\nu(\omega).$

 $\frac{d\nu(\gamma^{-1}\cdot)}{d\nu}(\omega)$ is an analogue of the Poisson kernel.

Let ρ be the right regular representation of Γ . For $\ell^{\infty}(\Gamma) \subset B(\ell^{2}(\Gamma))$,

$$P_{\mu}(f) = \sum_{\gamma \in \Gamma} \mu(\gamma) \rho(\gamma) f \rho(\gamma)^{-1}.$$

Set

$$Q_{\mu}(x) = \sum_{\gamma \in \Gamma} \mu(\gamma) \rho(\gamma) x \rho(\gamma)^{-1}, \quad x \in B(\ell^{2}(\Gamma)).$$

What is the noncommutative Poisson boundary for $(B(\ell^2(\Gamma)), Q_\mu)$?

Let ρ be the right regular representation of Γ . For $\ell^{\infty}(\Gamma) \subset B(\ell^{2}(\Gamma))$,

$$P_{\mu}(f) = \sum_{\gamma \in \Gamma} \mu(\gamma) \rho(\gamma) f \rho(\gamma)^{-1}.$$

Set

$$Q_{\mu}(x) = \sum_{\gamma \in \Gamma} \mu(\gamma) \rho(\gamma) x \rho(\gamma)^{-1}, \quad x \in B(\ell^{2}(\Gamma)).$$

What is the noncommutative Poisson boundary for $(B(\ell^2(\Gamma)), Q_\mu)$?

Answer

The crossed product $L^{\infty}(\Omega, \nu) \rtimes \Gamma$, (I. 2004, Jaworski-Neufang 2007).

Let R(G) be the group von Neumann algebra of a compact group G, which is generated by the right regular representation $(\rho, L^2(G))$, and

$$R(G) = \bigoplus_{\pi \in \hat{G}} R(G)_{\pi}, \quad R(G)_{\pi} \cong M_{n_{\pi}}(\mathbb{C}),$$

R(G) has a coproduct $\Delta_G : R(G) \ni \rho(g) \mapsto \rho(g) \otimes \rho(g) \in R(G) \otimes R(G).$ For a probability measure μ on \hat{G} , we set

$$P_{\mu} = \sum_{\pi \in \hat{G}} \mu(\pi) (\mathrm{id} \otimes \mathrm{tr}_{\pi}) \circ \Delta_G.$$

 $H^{\infty}(R(G), P_{\mu}) = \mathbb{C}.$

Let (π, H_π) be a finite dimensional unitary representation of a compact group G.

The infinite tensor product (ITP)

$$(M, \tau, \alpha_g) = \bigotimes_{k=1}^{\infty} (B(H_{\pi}), \operatorname{tr}_{\pi}, \operatorname{Ad} \pi(g))$$

gives an action α on the hyperfinite II₁ factor M. α is minimal, i.e., $M \cap M^{\alpha'} = \mathbb{C}$.

The ITP action makes sense for a compact quantum group \mathbb{G} if tr_{π} is replace by the so-called quantum trace τ_{π} . But $M \cap M^{\alpha'}$ is not trivial in general.

Theorem (I.2002)

Let (π, H_{π}) be a finite dimensional unitary representation of a compact quantum group \mathbb{G} such that every irreducible representation of \mathbb{G} is contained in a tensor power of π . Let α be the corresponding ITP action of \mathbb{G} on M. Then $M \cap M^{\alpha'}$ is the noncommutative Poisson boundary for $(R(\mathbb{G}), P_{\mu})$, where μ is a probability measure determined by (π, H_{π}) .

Corollary

Let the notation be as above. If \mathbb{G} is not a Kac algebra, the ITP action α is not minimal.

Denote $H^{\infty}(\hat{\mathbb{G}}, \mu) = H^{\infty}(R(\mathbb{G}), P_{\mu}).$

Outline of proof

Let
$$M_n = \bigotimes_{k=1}^n B(H_\pi)$$
.
Let $E_n : M \to M_n$ be the $\bigotimes_{k=1}^\infty \tau_\pi$ -preserving conditional expectation.

 π induces a homomorphism $\tilde{\pi} : R(\mathbb{G}) \to B(H_{\pi})$, and hence a homomorphism $\tilde{\pi}^{\otimes n} : R(\mathbb{G}) \to M_n$ satisfying $E_n \circ \tilde{\pi}^{\otimes (n+1)} = \tilde{\pi}^{\otimes n} \circ P_{\mu}$.

For $x \in H^{\infty}(\hat{\mathbb{G}}, \mu)$, $\{\tilde{\pi}^{\otimes n}(x)\}_{n=1}^{\infty}$ is a martingale, and

$$s-\lim_{n\to\infty}\tilde{\pi}^{\otimes n}(x)\in M\cap M^{\alpha'}.$$

Identification problem

I. 2002,
$$\mathbb{G} = SU_q(2), \ H^{\infty}(\hat{\mathbb{G}}, \mu) \cong L^{\infty}(SU_q(2)/\mathbb{T}),$$

I.-Neshveyev-Tuset 2006, $\mathbb{G} = SU_q(N)$, $H^{\infty}(\hat{\mathbb{G}}, \mu) \cong L^{\infty}(SU_q(N)/\mathbb{T}^{N-1})$.

Tomatsu 2007, $\mathbb{G} = q$ -deformation of a classical group, $H^{\infty}(\hat{\mathbb{G}}, \mu) \cong L^{\infty}(\mathbb{G}/T)$.

Vaes-Vander Vennet 2008, $\mathbb{G} = A_o(F).$

Vaes-Vander Vennet 2010, $\mathbb{G} = A_u(F).$

References

- M. Izumi, Non-commutative Poisson boundaries and compact quantum group actions, Adv. Math. **169** (2002), 1–57.
- M. Izumi, S. Neshveyev and L. Tuset, *Poisson boundary of the dual of* SU_q(n), Comm. Math. Phys. **262** (2006), 505–531.
- R. Tomatsu, A characterization of right coideals of quotient type and its application to classification of Poisson boundaries, Comm. Math. Phys. 275 (2007), 271–296.
- Vaes and N. Vander Vennet, Identification of the Poisson and Martin boundaries of orthogonal discrete quantum groups. J. Inst. Math. Jussieu, 7 (2008), 391–412.
- Vaes and N. Vander Vennet, *Poisson boundary of the discrete quantum group* $\widehat{A_u(F)}$, to appear in Compositio Math.