Additive Deformations of Bialgebras

Malte Gerhold

Institut für Mathematik und Informatik, Universität Greifswald
17.08 .2010

Content

(1) Outline
(2) The Heisenberg Algebra
(3) Additive Deformations and Cocycles

4 Additive Deformations of Hopf Algebras
(5) Examples

Bialgebras

Def. (bialgebra)

- unital algebra $(\mathcal{B}, \mu, \mathbb{1})$
- algebra homomorphism $\Delta: \mathcal{B} \rightarrow \mathcal{B} \otimes \mathcal{B}$ (comultiplication) s.t.

$$
(\Delta \otimes \mathrm{id}) \circ \Delta=(\mathrm{id} \otimes \Delta) \circ \Delta
$$

- algebra homomorphism $\delta: \mathcal{B} \rightarrow \mathbb{C}$ (counit) s.t.

$$
(\delta \otimes \mathrm{id}) \circ \Delta=(\mathrm{id} \otimes \delta) \circ \Delta=\mathrm{id}
$$

Def. (convolution)

- for $R, M: \mathcal{B}^{\otimes n} \rightarrow \mathcal{B}^{\otimes m}$ define $R \star M:=\mu_{m} \circ(R \otimes M) \circ \Delta_{n}$
- for $\varphi, \psi: \mathcal{B} \rightarrow \mathbb{C}$ this simplifies to $\varphi \star \psi:=(\varphi \otimes \psi) \circ \Delta$

More on Convolution

Def. (pointwise continuous convolution semigroup)

- $\left(\varphi_{t}\right)_{t \in \mathbb{R}}$
- $\varphi_{t}(a) \xrightarrow{t \rightarrow 0} \delta(a) \quad \forall a \in \mathcal{B}$
- $\varphi_{t} \star \varphi_{s}=\varphi_{t+s} \quad \forall t, s$

More on Convolution

Def. (pointwise continuous convolution semigroup)

- $\left(\varphi_{t}\right)_{t \in \mathbb{R}}$
- $\varphi_{t}(a) \xrightarrow{t \rightarrow 0} \delta(a) \quad \forall a \in \mathcal{B}$
- $\varphi_{t} \star \varphi_{s}=\varphi_{t+s} \quad \forall t, s$

Then:

- $\psi:=\left.\frac{\mathrm{d}}{\mathrm{d} t} \varphi_{t}\right|_{t=0}$ exists pointwise
- $\varphi_{t}=\exp _{\star}(t \psi)=\delta+t \psi+\frac{t^{2}}{2} \psi \star \psi+\ldots$
as a consequence of the fundamental theorem for coalgebras

Heisenberg Algebra

Def. (Heisenberg algebra)

algebra \mathcal{A} with generators a, a^{\dagger} and commutation relation

$$
\left[a, a^{\dagger}\right]=a a^{\dagger}-a^{\dagger} a=\mathbb{1}
$$

Heisenberg Algebra

Def. (Heisenberg algebra)

algebra \mathcal{A} with generators a, a^{\dagger} and commutation relation

$$
\left[a, a^{\dagger}\right]=a a^{\dagger}-a^{\dagger} a=\mathbb{1}
$$

\mathcal{A} bialgebra?

no bialgebra structure s.t.

$$
\Delta a^{(\dagger)}=a^{(\dagger)} \otimes \mathbb{1}+\mathbb{1} \otimes a^{(\dagger)}
$$

since

$$
\left[\Delta a, \Delta a^{\dagger}\right]=\left[a, a^{\dagger}\right] \otimes \mathbb{1}+\mathbb{1} \otimes\left[a, a^{\dagger}\right]=2 \mathbb{1} \otimes \mathbb{1} \neq \Delta\left[a, a^{\dagger}\right]
$$

A way out

Idea

define comultiplication as algebra homomorphism

$$
\Delta: \mathcal{A}_{s+t} \rightarrow \mathcal{A}_{s} \otimes \mathcal{A}_{t},
$$

- \mathcal{A}_{t} is algebra with generators a, a^{\dagger} and commutation relation

$$
\left[a, a^{\dagger}\right]_{t}=t \mathbb{1}
$$

- relations respected:

$$
\left[a, a^{\dagger}\right]_{s} \otimes \mathbb{1}+\mathbb{1} \otimes\left[a, a^{\dagger}\right]_{t}=s \mathbb{1} \otimes \mathbb{1}+t \mathbb{1} \otimes \mathbb{1}=\Delta\left(\left[a, a^{\dagger}\right]_{t+s}\right)
$$

What are Additive Deformations?

Def. (additive deformation)

- $\left(\mu_{t}\right)_{t \in \mathbb{R}}$ family of multiplications on bialgebra \mathcal{B}

What are Additive Deformations?

Def. (additive deformation)

- $\left(\mu_{t}\right)_{t \in \mathbb{R}}$ family of multiplications on bialgebra \mathcal{B}
- $\mathcal{B}_{t}=\left(\mathcal{B}, \mu_{t}, \mathbb{1}\right)$ is unital algebra

What are Additive Deformations?

Def. (additive deformation)

- $\left(\mu_{t}\right)_{t \in \mathbb{R}}$ family of multiplications on bialgebra \mathcal{B}
- $\mathcal{B}_{t}=\left(\mathcal{B}, \mu_{t}, \mathbb{1}\right)$ is unital algebra
- $\mu_{0}=\mu, \mathcal{B}_{0}=\mathcal{B}$

What are Additive Deformations?

Def. (additive deformation)

- $\left(\mu_{t}\right)_{t \in \mathbb{R}}$ family of multiplications on bialgebra \mathcal{B}
- $\mathcal{B}_{t}=\left(\mathcal{B}, \mu_{t}, \mathbb{1}\right)$ is unital algebra
- $\mu_{0}=\mu, \mathcal{B}_{0}=\mathcal{B}$
- $\lim _{t \rightarrow 0} \delta \circ \mu_{t}=\delta \circ \mu=\delta \otimes \delta$ pointwise

What are Additive Deformations?

Def. (additive deformation)

- $\left(\mu_{t}\right)_{t \in \mathbb{R}}$ family of multiplications on bialgebra \mathcal{B}
- $\mathcal{B}_{t}=\left(\mathcal{B}, \mu_{t}, \mathbb{1}\right)$ is unital algebra
- $\mu_{0}=\mu, \mathcal{B}_{0}=\mathcal{B}$
- $\lim _{t \rightarrow 0} \delta \circ \mu_{t}=\delta \circ \mu=\delta \otimes \delta$ pointwise
- $\Delta: \mathcal{B}_{t+s} \rightarrow \mathcal{B}_{t} \otimes \mathcal{B}_{s}$ is algebra homomorphism

What are Additive Deformations?

Def. (additive deformation)

- $\left(\mu_{t}\right)_{t \in \mathbb{R}}$ family of multiplications on bialgebra \mathcal{B}
- $\mathcal{B}_{t}=\left(\mathcal{B}, \mu_{t}, \mathbb{1}\right)$ is unital algebra
- $\mu_{0}=\mu, \mathcal{B}_{0}=\mathcal{B}$
- $\lim _{t \rightarrow 0} \delta \circ \mu_{t}=\delta \circ \mu=\delta \otimes \delta$ pointwise
- $\Delta: \mathcal{B}_{t+s} \rightarrow \mathcal{B}_{t} \otimes \mathcal{B}_{s}$ is algebra homomorphism

What are Additive Deformations?

Def. (additive deformation)

- $\left(\mu_{t}\right)_{t \in \mathbb{R}}$ family of multiplications on bialgebra \mathcal{B}
- $\mathcal{B}_{t}=\left(\mathcal{B}, \mu_{t}, \mathbb{1}\right)$ is unital algebra
- $\mu_{0}=\mu, \mathcal{B}_{0}=\mathcal{B}$
- $\lim _{t \rightarrow 0} \delta \circ \mu_{t}=\delta \circ \mu=\delta \otimes \delta$ pointwise
- $\Delta: \mathcal{B}_{t+s} \rightarrow \mathcal{B}_{t} \otimes \mathcal{B}_{s}$ is algebra homomorphism

Note

For $*$-bialgebras $\left(\mathcal{B}, \mu_{t}, \mathbb{1}, *\right)$ should be $*$-algebras and Δ should be a *-homomorphism.

Note

- the last condition can be written as

$$
\Delta \circ \mu_{t+s}=\underbrace{\left(\mu_{t} \otimes \mu_{s}\right) \circ(\mathrm{id} \otimes \tau \otimes \mathrm{id})}_{\text {multiplication on } \mathcal{B}_{\boldsymbol{t}} \otimes \mathcal{B}_{s}} \circ(\Delta \otimes \Delta)
$$

- applying the counit $\delta \otimes \delta$ to the last condition yields

$$
\begin{aligned}
\delta \circ \mu_{t+s} & =\left(\left(\delta \circ \mu_{t}\right) \otimes\left(\delta \circ \mu_{s}\right)\right) \circ \underbrace{(\text { id } \otimes \tau \otimes \text { id }) \circ(\Delta \otimes \Delta)}_{\text {comultiplication on } \mathcal{B} \otimes \mathcal{B}} \\
& =\left(\delta \circ \mu_{t}\right) \star\left(\delta \circ \mu_{s}\right)
\end{aligned}
$$

- $\left(\delta \circ \mu_{t}\right)_{t \geq 0}$ pointwise continuous convolution semigroup $\rightarrow \delta \circ \mu_{t}=\exp _{\star}(t L)$

The Generator of an Additive Deformation

Thm. (J. Wirth, 2002)
1-1-correspondence between additive deformations and generators via the equations

$$
L=\left.\frac{\mathrm{d}}{\mathrm{~d} t} \delta \circ \mu_{t}\right|_{t=0} \quad \mu_{t}=\mu \star \exp _{\star}(t L)
$$

The Generator of an Additive Deformation

Thm. (J. Wirth, 2002)
1-1-correspondence between additive deformations and generators via the equations

$$
L=\left.\frac{\mathrm{d}}{\mathrm{~d} t} \delta \circ \mu_{t}\right|_{t=0} \quad \mu_{t}=\mu \star \exp _{\star}(t L)
$$

Def. (generator of an additive deformation)

- $L(\mathbb{1} \otimes \mathbb{1})=0 \quad(L$ is normalized $)$

The Generator of an Additive Deformation

Thm. (J. Wirth, 2002)
1-1-correspondence between additive deformations and generators via the equations

$$
L=\left.\frac{\mathrm{d}}{\mathrm{~d} t} \delta \circ \mu_{t}\right|_{t=0} \quad \mu_{t}=\mu \star \exp _{\star}(t L)
$$

Def. (generator of an additive deformation)

- $L(\mathbb{1} \otimes \mathbb{1})=0 \quad(L$ is normalized $)$
- $L \star \mu=\mu \star L \quad$ (L is commuting)

The Generator of an Additive Deformation

Thm. (J. Wirth, 2002)

1-1-correspondence between additive deformations and generators via the equations

$$
L=\left.\frac{\mathrm{d}}{\mathrm{~d} t} \delta \circ \mu_{t}\right|_{t=0} \quad \mu_{t}=\mu \star \exp _{\star}(t L)
$$

Def. (generator of an additive deformation)

- $L(\mathbb{1} \otimes \mathbb{1})=0 \quad(L$ is normalized $)$
- $L \star \mu=\mu \star L \quad$ (L is commuting)
- $\delta \otimes L+L \circ(\mathrm{id} \otimes \mu)=L \otimes \delta+L \circ(\mu \otimes \mathrm{id})$
(L is 2-cocycle)

The Generator of an Additive Deformation

Thm. (J. Wirth, 2002)

1-1-correspondence between additive deformations and generators via the equations

$$
L=\left.\frac{\mathrm{d}}{\mathrm{~d} t} \delta \circ \mu_{t}\right|_{t=0} \quad \mu_{t}=\mu \star \exp _{\star}(t L)
$$

Def. (generator of an additive deformation)

- $L(\mathbb{1} \otimes \mathbb{1})=0 \quad(L$ is normalized $)$
- $L \star \mu=\mu \star L \quad$ (L is commuting)
- $\delta \otimes L+L \circ(\mathrm{id} \otimes \mu)=L \otimes \delta+L \circ(\mu \otimes \mathrm{id})$
(L is 2-cocycle)

The Generator of an Additive Deformation

Thm. (J. Wirth, 2002)

1-1-correspondence between additive deformations and generators via the equations

$$
L=\left.\frac{\mathrm{d}}{\mathrm{~d} t} \delta \circ \mu_{t}\right|_{t=0} \quad \mu_{t}=\mu \star \exp _{\star}(t L)
$$

Def. (generator of an additive deformation)

- $L(\mathbb{1} \otimes \mathbb{1})=0 \quad(L$ is normalized $)$
- $L \star \mu=\mu \star L \quad(L$ is commuting)
- $\delta \otimes L+L \circ(\mathrm{id} \otimes \mu)=L \otimes \delta+L \circ(\mu \otimes \mathrm{id})$
(L is 2-cocycle)
Last condition corresponds to associativity:
$\mu_{t} \circ\left(\mathrm{id} \otimes \mu_{t}\right)=\mu_{t} \circ\left(\mu_{t} \otimes \mathrm{id}\right) \quad \forall t$

Hopf Algebras

Def. (Hopf algebra)

- bialgebra \mathcal{B}
- linear map $S: \mathcal{B} \rightarrow \mathcal{B}$ s.t.

$$
\underbrace{\mu \circ(S \otimes \mathrm{id}) \circ \Delta}_{S \star \text { id }}=\underbrace{\mu \circ(\mathrm{id} \otimes S) \circ \Delta}_{\mathrm{id} \star S}=\mathbb{1} \delta
$$

Hopf Algebras

Def. (Hopf algebra)

- bialgebra \mathcal{B}
- linear map $S: \mathcal{B} \rightarrow \mathcal{B}$ s.t.

$$
\underbrace{\mu \circ(S \otimes \mathrm{id}) \circ \Delta}_{S \times \text { *id }}=\underbrace{\mu \circ(\mathrm{id} \otimes S) \circ \Delta}_{\text {id } \star S}=\mathbb{1} \delta
$$

question:

How does the antipode property carry over to additive deformations?

Deformed Antipodes

Def. (Hopf deformation)

exist linear mappings $S_{t}: \mathcal{B} \rightarrow \mathcal{B}$ s.t.

$$
\mu_{t} \circ\left(S_{t} \otimes \mathrm{id}\right) \circ \Delta=\mu_{t} \circ\left(\mathrm{id} \otimes S_{t}\right) \circ \Delta=\mathbb{1} \delta
$$

Thm. G.

Every additive deformation of a Hopf algebra is a Hopf deformation. Properties:

- $S_{t}(\mathbb{1})=\mathbb{1}$
- $S_{t}: \mathcal{B}_{-t} \rightarrow \mathcal{B}_{t}$ is algebra antihomomorphism
- $\left(S_{t} \otimes S_{r}\right) \circ \tau \circ \Delta=\Delta \circ S_{t+r}$
- $\left(\delta \circ S_{t}\right)_{t \in \mathbb{R}}$ is pointwise continuous convolution semigroup

Idea of the proof

Assume we have a Hopf deformation and $\delta \circ S_{t}=\exp _{\star}(t \sigma)$.
\rightarrow apply δ to the deformed antipode condition:

$$
\delta \circ \mu_{t} \circ\left(S_{t} \otimes \mathrm{id}\right) \circ \Delta=\delta \circ \mu_{t} \circ\left(\mathrm{id} \otimes S_{t}\right) \circ \Delta=\delta
$$

\rightarrow differentiate at $t=0$:

$$
L \circ(S \otimes \mathrm{id})+(\sigma \otimes \delta) \circ \Delta=L \circ(\mathrm{id} \otimes S)+(\delta \otimes \sigma) \circ \Delta=0
$$

or equivalently

$$
\sigma=-L \circ(S \otimes \mathrm{id})=-L \circ(\mathrm{id} \otimes S) .
$$

\rightarrow We have to prove that $S \star \exp _{\star}(-t L \circ(S \otimes \mathrm{id}))$ fulfills the condition for the deformed antipodes.
The extra conditions for the S_{t} are proven similarly as for the usual antipode.

Once more the Heisenberg Algebra

Given:

- polynomial algebra in two commuting indeterminates $\mathbb{C}\left[x_{1}, x_{2}\right]$

Once more the Heisenberg Algebra

Given:

- polynomial algebra in two commuting indeterminates $\mathbb{C}\left[x_{1}, x_{2}\right]$
- Hopf algebra structure with primitive comultiplication

$$
\Delta\left(x_{i}\right)=x_{i} \otimes \mathbb{1}+\mathbb{1} \otimes x_{i} \quad \delta\left(x_{i}\right)=0 \quad S\left(x_{i}\right)=-x_{i}
$$

Once more the Heisenberg Algebra

Given:

- polynomial algebra in two commuting indeterminates $\mathbb{C}\left[x_{1}, x_{2}\right]$
- Hopf algebra structure with primitive comultiplication

$$
\Delta\left(x_{i}\right)=x_{i} \otimes \mathbb{1}+\mathbb{1} \otimes x_{i} \quad \delta\left(x_{i}\right)=0 \quad S\left(x_{i}\right)=-x_{i}
$$

Once more the Heisenberg Algebra

Given:

- polynomial algebra in two commuting indeterminates $\mathbb{C}\left[x_{1}, x_{2}\right]$
- Hopf algebra structure with primitive comultiplication

$$
\Delta\left(x_{i}\right)=x_{i} \otimes \mathbb{1}+\mathbb{1} \otimes x_{i} \quad \delta\left(x_{i}\right)=0 \quad S\left(x_{i}\right)=-x_{i}
$$

For an additive deformation $\mu_{t}=\mu \star \exp _{\star}(t L)$

$$
\left[x_{1}, x_{2}\right]_{t}=\mu \star \exp _{\star}(t L)\left(x_{1} \otimes x_{2}-x_{2} \otimes x_{1}\right)=t L\left(x_{1} \otimes x_{2}-x_{2} \otimes x_{1}\right) \mathbb{1}
$$

Proposition

$L\left(x_{1} \otimes x_{2}\right)=1 / 2, L\left(x_{2} \otimes x_{1}\right)=-1 / 2$ and $L(M \otimes N)=0$ on all other monomials defines a generator of an additive deformation s.t. $\mathcal{B}_{t} \cong \mathcal{A}_{t}$

q-Heisenberg algebra

Given:

- algebra with generators x, y, h, h^{-1} with relations

$$
\begin{array}{rlrl}
x y & =q y x & h h^{-1} & =\mathbb{1}=h^{-1} h \\
x h & =q h x & y h & =q h y
\end{array}
$$

q-Heisenberg algebra

Given:

- algebra with generators x, y, h, h^{-1} with relations

$$
\begin{array}{rlrl}
x y & =q y x & h h^{-1} & =\mathbb{1}=h^{-1} h \\
x h & =q h x & y h & =q h y
\end{array}
$$

- Hopf algebra structure with

$$
\begin{array}{rlrlrl}
\Delta(x) & =x \otimes \mathbb{1}+h^{-1} \otimes x & \delta(x) & =0 & S(x) & =-x \\
\Delta(y) & =y \otimes \mathbb{1}+h \otimes y & \delta(y) & =0 & S(y) & =-y \\
\Delta\left(h^{k}\right) & =h^{k} \otimes h^{k} & \delta\left(h^{k}\right) & =1 & S\left(h^{k}\right) & =h^{-k}
\end{array}
$$

q-Heisenberg algebra

Given:

- algebra with generators x, y, h, h^{-1} with relations

$$
\begin{array}{rlrl}
x y & =q y x & h h^{-1} & =\mathbb{1}=h^{-1} h \\
x h & =q h x & y h & =q h y
\end{array}
$$

- Hopf algebra structure with

$$
\begin{array}{rlrlrl}
\Delta(x) & =x \otimes \mathbb{1}+h^{-1} \otimes x & \delta(x) & =0 & S(x) & =-x \\
\Delta(y) & =y \otimes \mathbb{1}+h \otimes y & \delta(y) & =0 & S(y) & =-y \\
\Delta\left(h^{k}\right) & =h^{k} \otimes h^{k} & \delta\left(h^{k}\right) & =1 & S\left(h^{k}\right) & =h^{-k}
\end{array}
$$

q-Heisenberg algebra

Given:

- algebra with generators x, y, h, h^{-1} with relations

$$
\begin{array}{rlrl}
x y & =q y x & h h^{-1} & =\mathbb{1}=h^{-1} h \\
x h & =q h x & y h & =q h y
\end{array}
$$

- Hopf algebra structure with

$$
\left.\begin{array}{rlrl}
\Delta(x) & =x \otimes \mathbb{1}+h^{-1} \otimes x & \delta(x) & =0 \\
\Delta(y) & =y \otimes \mathbb{1}+h \otimes y & \delta(y) & =0 \\
\Delta\left(h^{k}\right) & =h^{k} \otimes h^{k} & \delta\left(h^{k}\right) & =1
\end{array}\right) \quad S\left(h^{k}\right)=-x=h^{-k}
$$

Proposition

$L\left(h^{k} x \otimes y h^{\prime}\right)=1 / 2, L\left(h^{k} y \otimes x h^{\prime}\right)=-1 /(2 q)$ and $L(M \otimes N)=0$ for all other monomials defines a generator with $\mu_{t}(x \otimes y-q y \otimes x)=t \mathbb{1}$

A Short Bibliography

M. Gerhold.

Lévy-prozesse auf additiven deformationen von bialgebren, 2009.
目 M. Gerhold.
Additive deformations of hopf algebras.
Preprintreihe Mathematik der Universität Greifswald, 2010.
圊 M. Schürmann.
Lévy processes on deformations of hopf algebras.
In Infinite Dimensional Harmonic Analysis III, pages 277-287. World Scientific Publishing Co., 2003.

R J. Wirth.
Formule de Levy Khintchine et Deformations d'Algebres.
PhD thesis, Universite Paris VI, 2002.

