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Outline

Bialgebras

Def. (bialgebra)

unital algebra (B, µ,1)

algebra homomorphism ∆ : B → B ⊗ B (comultiplication) s.t.

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆

algebra homomorphism δ : B → C (counit) s.t.

(δ ⊗ id) ◦∆ = (id⊗δ) ◦∆ = id

Def. (convolution)

for R,M : B⊗n → B⊗m de�ne R ?M := µm ◦ (R ⊗M) ◦∆n

for ϕ,ψ : B → C this simpli�es to ϕ ? ψ := (ϕ⊗ ψ) ◦∆
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Outline

More on Convolution

Def. (pointwise continuous convolution semigroup)

(ϕt)t∈R

ϕt(a)
t→0−−→ δ(a) ∀a ∈ B

ϕt ? ϕs = ϕt+s ∀t, s

Then:

ψ := d

dt
ϕt

∣∣
t=0

exists pointwise

ϕt = exp?(tψ) = δ + tψ + t2

2
ψ ? ψ + . . .

as a consequence of the fundamental theorem for coalgebras
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The Heisenberg Algebra

Heisenberg Algebra

Def. (Heisenberg algebra)

algebra A with generators a, a† and commutation relation[
a, a†

]
= aa† − a†a = 1

A bialgebra?

no bialgebra structure s.t.

∆a(†) = a(†) ⊗ 1 + 1⊗ a(†),

since [
∆a,∆a†

]
=
[
a, a†

]
⊗ 1 + 1⊗

[
a, a†

]
= 21⊗ 1 6= ∆

[
a, a†

]
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The Heisenberg Algebra

A way out

Idea

de�ne comultiplication as algebra homomorphism

∆ : As+t → As ⊗At ,

At is algebra with generators a, a† and commutation relation[
a, a†

]
t

= t1

relations respected:[
a, a†

]
s

⊗ 1 + 1⊗
[
a, a†

]
t

= s1⊗ 1 + t1⊗ 1 = ∆(
[
a, a†

]
t+s

)
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Additive Deformations and Cocycles

What are Additive Deformations?

Def. (additive deformation)

(µt)t∈R family of multiplications on bialgebra B

Bt = (B, µt , 1) is unital algebra

µ0 = µ, B0 = B
lim
t→0

δ ◦ µt = δ ◦ µ = δ ⊗ δ pointwise

∆ : Bt+s → Bt ⊗ Bs is algebra homomorphism

Note

For ∗-bialgebras (B, µt , 1, ∗) should be ∗-algebras and ∆ should be a

∗-homomorphism.
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Additive Deformations and Cocycles

Note

the last condition can be written as

∆ ◦ µt+s = (µt ⊗ µs) ◦ (id⊗τ ⊗ id)︸ ︷︷ ︸
multiplication on Bt ⊗ Bs

◦(∆⊗∆)

applying the counit δ ⊗ δ to the last condition yields

δ ◦ µt+s = ((δ ◦ µt)⊗ (δ ◦ µs)) ◦ (id⊗τ ⊗ id) ◦ (∆⊗∆)︸ ︷︷ ︸
comultiplication on B ⊗ B

= (δ ◦ µt) ? (δ ◦ µs)

(δ ◦ µt)t≥0 pointwise continuous convolution semigroup

→ δ ◦ µt = exp?(tL)
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Additive Deformations and Cocycles

The Generator of an Additive Deformation

Thm. (J. Wirth, 2002)

1-1-correspondence between additive deformations and generators via the

equations

L =
d

dt
δ ◦ µt

∣∣∣∣
t=0

µt = µ ? exp?(tL)

Def. (generator of an additive deformation)

L(1⊗ 1) = 0 (L is normalized)

L ? µ = µ ? L (L is commuting)

δ ⊗ L + L ◦ (id⊗µ) = L⊗ δ + L ◦ (µ⊗ id)
(L is 2-cocycle)

Last condition corresponds to associativity:

µt ◦ (id⊗µt) = µt ◦ (µt ⊗ id) ∀t
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Additive Deformations of Hopf Algebras

Hopf Algebras

Def. (Hopf algebra)

bialgebra B
linear map S : B → B s.t.

µ ◦ (S ⊗ id) ◦∆︸ ︷︷ ︸
S?id

= µ ◦ (id⊗S) ◦∆︸ ︷︷ ︸
id ?S

= 1δ

question:

How does the antipode property carry over to additive deformations?
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Additive Deformations of Hopf Algebras

Deformed Antipodes

Def. (Hopf deformation)

exist linear mappings St : B → B s.t.

µt ◦ (St ⊗ id) ◦∆ = µt ◦ (id⊗St) ◦∆ = 1δ

Thm. G.

Every additive deformation of a Hopf algebra is a Hopf deformation.

Properties:

St(1) = 1

St : B−t → Bt is algebra antihomomorphism

(St ⊗ Sr ) ◦ τ ◦∆ = ∆ ◦ St+r

(δ ◦ St)t∈R is pointwise continuous convolution semigroup
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Additive Deformations of Hopf Algebras

Idea of the proof

Assume we have a Hopf deformation and δ ◦ St = exp?(tσ).
→ apply δ to the deformed antipode condition:

δ ◦ µt ◦ (St ⊗ id) ◦∆ = δ ◦ µt ◦ (id⊗St) ◦∆ = δ

→ di�erentiate at t = 0:

L ◦ (S ⊗ id) + (σ ⊗ δ) ◦∆ = L ◦ (id⊗S) + (δ ⊗ σ) ◦∆ = 0

or equivalently

σ = −L ◦ (S ⊗ id) = −L ◦ (id⊗S).

→ We have to prove that S ? exp?(−tL ◦ (S ⊗ id)) ful�lls the condition for

the deformed antipodes.

The extra conditions for the St are proven similarly as for the usual

antipode.
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Examples

Once more the Heisenberg Algebra

Given:

polynomial algebra in two commuting indeterminates C [x1, x2]

Hopf algebra structure with primitive comultiplication

∆(xi ) = xi ⊗ 1 + 1⊗ xi δ(xi ) = 0 S(xi ) = −xi

For an additive deformation µt = µ ? exp?(tL)

[x1, x2]
t

= µ ? exp?(tL)(x1 ⊗ x2 − x2 ⊗ x1) = tL(x1 ⊗ x2 − x2 ⊗ x1)1

Proposition

L(x1 ⊗ x2) = 1/2, L(x2 ⊗ x1) = −1/2 and L(M ⊗ N) = 0 on all other

monomials de�nes a generator of an additive deformation s.t. Bt ∼= At
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Examples

q-Heisenberg algebra

Given:

algebra with generators x , y , h, h−1 with relations

xy = qyx hh−1 = 1 = h−1h

xh = qhx yh = qhy

Hopf algebra structure with

∆(x) = x ⊗ 1 + h−1 ⊗ x δ(x) = 0 S(x) = −x
∆(y) = y ⊗ 1 + h ⊗ y δ(y) = 0 S(y) = −y

∆(hk) = hk ⊗ hk δ(hk) = 1 S(hk) = h−k

Proposition

L(hkx ⊗ yhl ) = 1/2, L(hky ⊗ xhl ) = −1/(2q) and L(M ⊗ N) = 0 for all

other monomials de�nes a generator with µt(x ⊗ y − qy ⊗ x) = t1
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