Noncommutative independence from characters of the infinite symmetric group \mathbb{S}_∞

Claus Köstler Institute of Mathematics and Physics Aberystwyth University, Wales

cck@aber.ac.uk

(joint with Rolf Gohm)

ICM Satellite Conference 2010 on Quantum Probability and Related Topics JNCASR, Bangalore

August 14, 2010

Claus Köstler

Noncommutative independence from \mathbb{S}_∞

The random variables $(X_n)_{n\geq 0}$ are said to be **exchangeable** if

$$\mathbb{E}\big(X_{\mathbf{i}(1)}\cdots X_{\mathbf{i}(n)}\big) = \mathbb{E}\big(X_{\sigma(\mathbf{i}(1))}\cdots X_{\sigma(\mathbf{i}(n))}\big) \qquad (\sigma \in \mathbb{S}_{\infty})$$

for all *n*-tuples i: $\{1, 2, \ldots, n\} \rightarrow \mathbb{N}_0$ and $n \in \mathbb{N}$.

・ロ・・日・・日・・日・ 日・ うへつ

The random variables $(X_n)_{n\geq 0}$ are said to be **exchangeable** if

$$\mathbb{E}\big(X_{\mathbf{i}(1)}\cdots X_{\mathbf{i}(n)}\big) = \mathbb{E}\big(X_{\sigma(\mathbf{i}(1))}\cdots X_{\sigma(\mathbf{i}(n))}\big) \qquad (\sigma \in \mathbb{S}_{\infty})$$

for all *n*-tuples \mathbf{i} : $\{1, 2, \dots, n\} \rightarrow \mathbb{N}_0$ and $n \in \mathbb{N}$.

Theorem (De Finetti 1931,...)

The law of an exchangeable sequence $(X_n)_{n\geq 0}$ is given by a unique convex combination of infinite product measures.

(ロ) (四) (三) (三) (三) (三) (○) (○)

The random variables $(X_n)_{n\geq 0}$ are said to be **exchangeable** if

$$\mathbb{E}\big(X_{\mathbf{i}(1)}\cdots X_{\mathbf{i}(n)}\big) = \mathbb{E}\big(X_{\sigma(\mathbf{i}(1))}\cdots X_{\sigma(\mathbf{i}(n))}\big) \qquad (\sigma \in \mathbb{S}_{\infty})$$

for all *n*-tuples $\mathbf{i} \colon \{1, 2, \dots, n\} \to \mathbb{N}_0$ and $n \in \mathbb{N}$.

Theorem (De Finetti 1931,...)

The law of an exchangeable sequence $(X_n)_{n\geq 0}$ is given by a unique convex combination of infinite product measures.

"Any exchangeable process is an average of i.i.d. processes."

Exchangeability in noncommutative probability

Given the tracial W*-algebraic probability space (\mathcal{A}, φ) the selfadjoint operators $(x_n)_{n\geq 0} \subset \mathcal{A}$ are **exchangeable** if

$$\varphi(\mathbf{x}_{\mathbf{i}(1)}\cdots\mathbf{x}_{\mathbf{i}(n)}) = \varphi(\mathbf{x}_{\sigma(\mathbf{i}(1))}\cdots\mathbf{x}_{\sigma(\mathbf{i}(n))}) \qquad (\sigma \in \mathbb{S}_{\infty})$$

for all *n*-tuples i: $\{1, 2, \ldots, n\} \to \mathbb{N}_0$ and $n \in \mathbb{N}$.

Exchangeability in noncommutative probability

Given the tracial W*-algebraic probability space (\mathcal{A}, φ) the selfadjoint operators $(x_n)_{n\geq 0} \subset \mathcal{A}$ are **exchangeable** if

$$\varphi(\mathbf{x}_{\mathbf{i}(1)}\cdots\mathbf{x}_{\mathbf{i}(n)}) = \varphi(\mathbf{x}_{\sigma(\mathbf{i}(1))}\cdots\mathbf{x}_{\sigma(\mathbf{i}(n))}) \qquad (\sigma \in \mathbb{S}_{\infty})$$

for all *n*-tuples $\mathbf{i} \colon \{1, 2, \dots, n\} \to \mathbb{N}_0$ and $n \in \mathbb{N}$.

Theorem (K 2009)

An exchangeable sequence $(x_n)_{n\geq 0} \subset (\mathcal{A}, \varphi)$ is \mathcal{T} -independent, where

$$\mathcal{T} = \bigcap_{n \ge 0} \mathsf{vN}(x_n, x_{n+1}, x_{n+2}, \ldots)$$

is the tail algebra of the sequence.

Exchangeability in noncommutative probability

Given the tracial W*-algebraic probability space (\mathcal{A}, φ) the selfadjoint operators $(x_n)_{n\geq 0} \subset \mathcal{A}$ are **exchangeable** if

$$\varphi(\mathbf{x}_{\mathbf{i}(1)}\cdots\mathbf{x}_{\mathbf{i}(n)}) = \varphi(\mathbf{x}_{\sigma(\mathbf{i}(1))}\cdots\mathbf{x}_{\sigma(\mathbf{i}(n))}) \qquad (\sigma \in \mathbb{S}_{\infty})$$

for all *n*-tuples $\mathbf{i} \colon \{1, 2, \dots, n\} \to \mathbb{N}_0$ and $n \in \mathbb{N}$.

Theorem (K 2009)

An exchangeable sequence $(x_n)_{n\geq 0} \subset (\mathcal{A}, \varphi)$ is \mathcal{T} -independent, where

$$\mathcal{T} = \bigcap_{n \ge 0} \mathsf{vN}(x_n, x_{n+1}, x_{n+2}, \ldots)$$

is the tail algebra of the sequence.

"What is this noncommutative notion of T-independence?!"

Noncommutative conditional independence

Definition Let $\mathcal{N}, (\mathcal{M}_i)_{i \in I}$ be von Neumann subalgebras of (\mathcal{A}, φ) .

NOTATION: $E_{\mathcal{N}}$ is the φ -preserving cond. expectation from \mathcal{M} onto \mathcal{N} .

Claus Köstler Noncommutative independence from \mathbb{S}_{∞}

・ロ・・ 日・ ・ 日・ ・ 日・ ・ 日・

Noncommutative conditional independence

Definition

Let $\mathcal{N}, (\mathcal{M}_i)_{i \in I}$ be von Neumann subalgebras of (\mathcal{A}, φ) . Then the family $(\mathcal{M}_i)_{i \in I}$ is \mathcal{N} -independent if

$$E_{\mathcal{N}}(xy) = E_{\mathcal{N}}(x)E_{\mathcal{N}}(y)$$

for all $x \in vN(\mathcal{N}, \mathcal{M}_j | j \in J)$ and $y \in vN(\mathcal{N}, \mathcal{M}_k | k \in K)$, and disjoint subsets J, K of I.

NOTATION: $E_{\mathcal{N}}$ is the φ -preserving cond. expectation from \mathcal{M} onto \mathcal{N} .

Noncommutative conditional independence

Definition

Let $\mathcal{N}, (\mathcal{M}_i)_{i \in I}$ be von Neumann subalgebras of (\mathcal{A}, φ) . Then the family $(\mathcal{M}_i)_{i \in I}$ is \mathcal{N} -independent if

$$E_{\mathcal{N}}(xy) = E_{\mathcal{N}}(x)E_{\mathcal{N}}(y)$$

for all $x \in vN(\mathcal{N}, \mathcal{M}_j | j \in J)$ and $y \in vN(\mathcal{N}, \mathcal{M}_k | k \in K)$, and disjoint subsets J, K of I.

NOTATION: $E_{\mathcal{N}}$ is the φ -preserving cond. expectation from \mathcal{M} onto \mathcal{N} .

Equivalent formulation for index set $I = \{1, 2\}$:

 $\begin{array}{ccc} \mathsf{vN}(\mathcal{N},\mathcal{M}_2) & \subset & \mathcal{M} \\ & \cup & & \cup \\ & \mathcal{N} & \subset & \mathsf{vN}(\mathcal{N},\mathcal{M}_1) \end{array} \text{ is a commuting square (w.r.t. } \varphi).$

Exchangeability for the infinite symmetric group \mathbb{S}_∞

 \mathbb{S}_{∞} is the inductive limit of the symmetric group \mathbb{S}_n as $n \to \infty$, acting on $\{0, 1, 2, \ldots\}$. A positive definite function $\chi \colon \mathbb{S}_{\infty} \to \mathbb{C}$ is a **character** if it is constant on conjugacy classes and normalized at the identity.

 \mathbb{S}_{∞} is the inductive limit of the symmetric group \mathbb{S}_n as $n \to \infty$, acting on $\{0, 1, 2, \ldots\}$. A positive definite function $\chi \colon \mathbb{S}_{\infty} \to \mathbb{C}$ is a **character** if it is constant on conjugacy classes and normalized at the identity.

Elementary observation

Let $\gamma_i := (0, i)$. Then the sequence $(\gamma_i)_{i \in \mathbb{N}}$ is exchangeable, i.e.

$$\chi(\gamma_{\mathbf{i}(1)}\gamma_{\mathbf{i}(2)}\cdots\gamma_{\mathbf{i}(n)})=\chi(\gamma_{\sigma(\mathbf{i}(1))}\gamma_{\sigma(\mathbf{i}(2))}\cdots\gamma_{\sigma(\mathbf{i}(n))})$$

for $\sigma \in \mathbb{S}_{\infty}$ with $\sigma(0) = 0$, *n*-tuples i: $\{1, \ldots, n\} \to \mathbb{N}$ and $n \in \mathbb{N}$.

 \mathbb{S}_{∞} is the inductive limit of the symmetric group \mathbb{S}_n as $n \to \infty$, acting on $\{0, 1, 2, \ldots\}$. A positive definite function $\chi \colon \mathbb{S}_{\infty} \to \mathbb{C}$ is a **character** if it is constant on conjugacy classes and normalized at the identity.

Elementary observation

Let $\gamma_i := (0, i)$. Then the sequence $(\gamma_i)_{i \in \mathbb{N}}$ is exchangeable, i.e.

$$\chi(\gamma_{\mathbf{i}(1)}\gamma_{\mathbf{i}(2)}\cdots\gamma_{\mathbf{i}(n)})=\chi(\gamma_{\sigma(\mathbf{i}(1))}\gamma_{\sigma(\mathbf{i}(2))}\cdots\gamma_{\sigma(\mathbf{i}(n))})$$

for $\sigma \in \mathbb{S}_{\infty}$ with $\sigma(0) = 0$, *n*-tuples i: $\{1, \ldots, n\} \to \mathbb{N}$ and $n \in \mathbb{N}$.

Task

Identify the convex combination of extremal characters of $\mathbb{S}_\infty.$ In other words: prove a noncommutative de Finetti theorem!

Thoma's theorem (1964) is a quantum de Finetti theorem!

An extremal character of the group \mathbb{S}_∞ is of the form

$$\chi(\sigma) = \prod_{k=2}^{\infty} \left(\sum_{i=1}^{\infty} a_i^k + (-1)^{k-1} \sum_{j=1}^{\infty} b_j^k \right)^{m_k(\sigma)}$$

Here $m_k(\sigma)$ is the number of k-cycles in the permutation σ and the two sequences $(a_i)_{i=1}^{\infty}, (b_j)_{j=1}^{\infty}$ satisfy

$$a_1 \ge a_2 \ge \cdots \ge 0,$$
 $b_1 \ge b_2 \ge \cdots \ge 0,$ $\sum_{i=1}^{\infty} a_i + \sum_{j=1}^{\infty} b_j \le 1.$
Alternative proofs

Vershik & Kerov 1981: asymptotic representation theory Okounkov 1997: Olshanski semigroups and spectral theory

A new operator algebraic proof from exchangeability

R. Gohm & C. Köstler. Noncommutative independence from characters of the symmetric group S_{∞} . 47 pages. Preprint (2010). (arXiv:1005.5726)

Claus Köstler

Noncommutative independence from \mathbb{S}_∞

Theorem (Gohm & K

Suppose the tracial probability space (\mathcal{A}, φ) is generated by the sequence $(x_n)_{n \ge 0}$. TFAE:

(a) (x_n) is exchangeable

Remark Above characterization generalizes easily to sequences of algebras.

Claus Köstler Noncommutative independence from \mathbb{S}_{∞}

Theorem (Gohm & K

Suppose the tracial probability space (\mathcal{A}, φ) is generated by the sequence $(x_n)_{n\geq 0}$. TFAE:

- (a) (x_n) is exchangeable
- (b) there exists a representation $\rho \colon \mathbb{S}_{\infty} \to \operatorname{Aut}(\mathcal{A}, \varphi)$ such that

Remark

Above characterization generalizes easily to sequences of algebras.

Theorem (Gohm & K

Suppose the tracial probability space (\mathcal{A}, φ) is generated by the sequence $(x_n)_{n\geq 0}$. TFAE:

- (a) (x_n) is exchangeable
- (b) there exists a representation $\rho \colon \mathbb{S}_{\infty} \to \operatorname{Aut}(\mathcal{A}, \varphi)$ such that (i) $x_n = \rho(\sigma_n \sigma_{n-1} \cdots \sigma_1) x_0$ for $n \ge 1$.

NOTATION:

 σ_i is the Coxeter generator (i-1, i) of \mathbb{S}_{∞} , where \mathbb{S}_{∞} acts on $\{0, 1, 2, 3, ...\}$ by permutations.

Remark

Above characterization generalizes easily to sequences of algebras.

Theorem (Gohm & K

Suppose the tracial probability space (\mathcal{A}, φ) is generated by the sequence $(x_n)_{n\geq 0}$. TFAE:

- (a) (x_n) is exchangeable
- (b) there exists a representation $\rho \colon \mathbb{S}_{\infty} \to \operatorname{Aut}(\mathcal{A}, \varphi)$ such that

(i)
$$x_n = \rho(\sigma_n \sigma_{n-1} \cdots \sigma_1) x_0$$
 for $n \ge 1$.
(ii) $x_0 \in \mathcal{A}^{\rho(\sigma_n)}$ for $n \ge 2$ (Localization Property)

NOTATION:

 σ_i is the Coxeter generator (i-1,i) of \mathbb{S}_{∞} , where \mathbb{S}_{∞} acts on $\{0, 1, 2, 3, ...\}$ by permutations.

Remark

Above characterization generalizes easily to sequences of algebras.

Theorem (Gohm & K

Suppose the tracial probability space (\mathcal{A}, φ) is generated by the sequence $(x_n)_{n\geq 0}$. TFAE:

- (a) (x_n) is exchangeable
- (b) there exists a representation $\rho \colon \mathbb{S}_{\infty} \to \operatorname{Aut}(\mathcal{A}, \varphi)$ such that

(i)
$$x_n = \rho(\sigma_n \sigma_{n-1} \cdots \sigma_1) x_0$$
 for $n \ge 1$.
(ii) $x_0 \in \mathcal{A}^{\rho(\sigma_n)}$ for $n \ge 2$ (Localization Property)

NOTATION:

 σ_i is the Coxeter generator (i - 1, i) of \mathbb{S}_{∞} , where \mathbb{S}_{∞} acts on $\{0, 1, 2, 3, ...\}$ by permutations. Let $\mathbb{S}_{n,\infty} = \langle \sigma_n, \sigma_{n+1}, \ldots \rangle$.

Remark

Above characterization generalizes easily to sequences of algebras.

Theorem (Gohm & K 2009)

Suppose (\mathcal{A}, φ) is equipped with the generating representation $\rho \colon \mathbb{S}_{\infty} \to \operatorname{Aut}(\mathcal{A}, \varphi).$

(ロ) (四) (三) (三) (三) (三) (○) (○)

Theorem (Gohm & K 2009)

Suppose (\mathcal{A}, φ) is equipped with the generating representation $\rho \colon \mathbb{S}_{\infty} \to \operatorname{Aut}(\mathcal{A}, \varphi)$. Let $\mathcal{A}_{n-1} := \mathcal{A}^{\rho(\mathbb{S}_{n+1,\infty})}$, with $n \in \mathbb{N}_0$,

Theorem (Gohm & K 2009)

Suppose (\mathcal{A}, φ) is equipped with the generating representation $\rho \colon \mathbb{S}_{\infty} \to \operatorname{Aut}(\mathcal{A}, \varphi)$. Let $\mathcal{A}_{n-1} := \mathcal{A}^{\rho(\mathbb{S}_{n+1,\infty})}$, with $n \in \mathbb{N}_0$, and

$$\alpha$$
 $(x) = \text{SOT-} \lim_{n \to \infty} \rho(\sigma_1 \quad \sigma_2 \quad \cdots \quad \sigma_n \quad)(x), \qquad x \in \mathcal{A}.$

Theorem (Gohm & K 2009)

Suppose (\mathcal{A}, φ) is equipped with the generating representation $\rho \colon \mathbb{S}_{\infty} \to \operatorname{Aut}(\mathcal{A}, \varphi)$. Let $\mathcal{A}_{n-1} := \mathcal{A}^{\rho(\mathbb{S}_{n+1,\infty})}$, with $n \in \mathbb{N}_0$, and

$$\alpha \ (x) = \text{SOT-} \lim_{n \to \infty} \rho(\sigma_1 \quad \sigma_2 \quad \cdots \quad \sigma_n \quad)(x), \qquad x \in \mathcal{A}.$$

Then the subalgebras $(\alpha^n(\mathcal{A}_0 \quad))_{n \ge 0}$ are exchangeable

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQ@

Theorem (Gohm & K 2009)

Suppose (\mathcal{A}, φ) is equipped with the generating representation $\rho \colon \mathbb{S}_{\infty} \to \operatorname{Aut}(\mathcal{A}, \varphi)$. Let $\mathcal{A}_{n-1} := \mathcal{A}^{\rho(\mathbb{S}_{n+1,\infty})}$, with $n \in \mathbb{N}_0$, and

$$\alpha (x) = \text{SOT-} \lim_{n \to \infty} \rho(\sigma_1 \quad \sigma_2 \quad \cdots \quad \sigma_n \quad)(x), \qquad x \in \mathcal{A}.$$

Then the subalgebras $(\alpha^n(\mathcal{A}_0))_{n\geq 0}$ are exchangeable and, by the n.c. de Finetti theorem (JFA 2010), \mathcal{A}_{-1} -independent.

Theorem (Gohm & K 2009)

Suppose (\mathcal{A}, φ) is equipped with the generating representation $\rho \colon \mathbb{S}_{\infty} \to \operatorname{Aut}(\mathcal{A}, \varphi)$. Let $\mathcal{A}_{n-1} := \mathcal{A}^{\rho(\mathbb{S}_{n+1,\infty})}$, with $n \in \mathbb{N}_0$, and

$$\alpha$$
 $(x) = \text{SOT-} \lim_{n \to \infty} \rho(\sigma_1 \quad \sigma_2 \quad \cdots \quad \sigma_n \quad)(x), \qquad x \in \mathcal{A}.$

Then the subalgebras $(\alpha^n(\mathcal{A}_0))_{n\geq 0}$ are exchangeable and, by the n.c. de Finetti theorem (JFA 2010), \mathcal{A}_{-1} -independent. Moreover one obtains a triangular tower of commuting squares:

Theorem (Gohm & K 2009)

Suppose (\mathcal{A}, φ) is equipped with the generating representation $\rho \colon \mathbb{S}_{\infty} \to \operatorname{Aut}(\mathcal{A}, \varphi)$. Let $\mathcal{A}_{n-1} := \mathcal{A}^{\rho(\mathbb{S}_{n+1,\infty})}$, with $n \in \mathbb{N}_0$, and

$$\alpha$$
 $(x) = \text{SOT-} \lim_{n \to \infty} \rho(\sigma_1 \quad \sigma_2 \quad \cdots \quad \sigma_n \quad)(x), \qquad x \in \mathcal{A}.$

Then the subalgebras $(\alpha^n(\mathcal{A}_0))_{n\geq 0}$ are exchangeable and, by the n.c. de Finetti theorem (JFA 2010), \mathcal{A}_{-1} -independent. Moreover one obtains a triangular tower of commuting squares:

Claus Köstler

Noncommutative independence from \mathbb{S}_{∞}

Theorem (Gohm & K 2009)

Suppose (\mathcal{A}, φ) is equipped with the generating representation $\rho \colon \mathbb{S}_{\infty} \to \operatorname{Aut}(\mathcal{A}, \varphi)$. Let $\mathcal{A}_{n-1} := \mathcal{A}^{\rho(\mathbb{S}_{n+1,\infty})}$, with $n \in \mathbb{N}_0$, and

$$\alpha_{k}(x) = \text{SOT-} \lim_{n \to \infty} \rho(\sigma_{1+k} \sigma_{2+k} \cdots \sigma_{n+k})(x), \qquad x \in \mathcal{A}.$$

Then the subalgebras $(\alpha^n(\mathcal{A}_0))_{n\geq 0}$ are exchangeable and, by the n.c. de Finetti theorem (JFA 2010), \mathcal{A}_{-1} -independent. Moreover one obtains a triangular tower of commuting squares:

Claus Köstler

Noncommutative independence from \mathbb{S}_∞

Theorem (Gohm & K 2009)

Suppose (\mathcal{A}, φ) is equipped with the generating representation $\rho \colon \mathbb{S}_{\infty} \to \operatorname{Aut}(\mathcal{A}, \varphi)$. Let $\mathcal{A}_{n-1} := \mathcal{A}^{\rho(\mathbb{S}_{n+1,\infty})}$, with $n \in \mathbb{N}_0$, and

$$\alpha_{k}(x) = \text{SOT-} \lim_{n \to \infty} \rho(\sigma_{1+k} \sigma_{2+k} \cdots \sigma_{n+k})(x), \qquad x \in \mathcal{A}.$$

Then the subalgebras $(\alpha_k^n(\mathcal{A}_{0+k}))_{n\geq 0}$ are exchangeable and, by the n.c. de Finetti theorem (JFA 2010), \mathcal{A}_{-1+k} -independent. Moreover one obtains a triangular tower of commuting squares:

Theorem (Gohm & K 2009)

Suppose (\mathcal{A}, φ) is equipped with the generating representation $\rho \colon \mathbb{S}_{\infty} \to \operatorname{Aut}(\mathcal{A}, \varphi)$. Let $\mathcal{A}_{n-1} := \mathcal{A}^{\rho(\mathbb{S}_{n+1,\infty})}$, with $n \in \mathbb{N}_0$, and

$$\alpha_{k}(x) = \text{SOT-} \lim_{n \to \infty} \rho(\sigma_{1+k} \sigma_{2+k} \cdots \sigma_{n+k})(x), \qquad x \in \mathcal{A}.$$

Then the subalgebras $(\alpha_k^n(\mathcal{A}_{0+k}))_{n\geq 0}$ are exchangeable and, by the n.c. de Finetti theorem (JFA 2010), \mathcal{A}_{-1+k} -independent. Moreover one obtains a triangular tower of commuting squares:

Claus Köstler

Noncommutative independence from \mathbb{S}_∞

Suppose the tracial probability space (A, tr) is equipped with the (unitary) representation

 $\pi \colon \mathbb{S}_{\infty} \to \mathcal{U}(\mathcal{A}), \qquad \text{such that } \mathcal{A} = \mathsf{vN}_{\pi}(\mathbb{S}_{\infty}).$

Suppose the tracial probability space (A, tr) is equipped with the (unitary) representation

 $\pi \colon \mathbb{S}_{\infty} \to \mathcal{U}(\mathcal{A}), \qquad \text{such that } \mathcal{A} = \mathsf{vN}_{\pi}(\mathbb{S}_{\infty}).$

As before, $\rho := \operatorname{Ad} \pi$ is generating with fixed point algebras

$$\mathcal{A}_{n-1} = \mathcal{A}^{\operatorname{Ad} \pi(\mathbb{S}_{n+1,\infty})} = \mathcal{A} \cap (\mathsf{vN}_{\pi}(\sigma_k | k > n))'.$$

Suppose the tracial probability space (A, tr) is equipped with the (unitary) representation

 $\pi \colon \mathbb{S}_{\infty} \to \mathcal{U}(\mathcal{A}), \qquad \text{such that } \mathcal{A} = \mathsf{vN}_{\pi}(\mathbb{S}_{\infty}).$

As before, $\rho := \operatorname{Ad} \pi$ is generating with fixed point algebras

$$\mathcal{A}_{n-1} = \mathcal{A}^{\operatorname{Ad} \pi(\mathbb{S}_{n+1,\infty})} = \mathcal{A} \cap (\mathsf{vN}_{\pi}(\sigma_k | k > n))'.$$

Theorem (Gohm & K '09)

Suppose the tracial probability space (A, tr) is equipped with the (unitary) representation

 $\pi\colon \mathbb{S}_\infty \to \mathcal{U}(\mathcal{A}), \qquad \text{such that } \mathcal{A} = \mathsf{vN}_\pi(\mathbb{S}_\infty).$

As before, $\rho := \operatorname{Ad} \pi$ is generating with fixed point algebras

$$\mathcal{A}_{n-1} = \mathcal{A}^{\operatorname{Ad} \pi(\mathbb{S}_{n+1,\infty})} = \mathcal{A} \cap (\mathsf{vN}_{\pi}(\sigma_k | k > n))'.$$

Theorem (Gohm & K '09)

 $\mathcal{A}_{-1} = \mathcal{Z}(\mathcal{A})$

Suppose the tracial probability space (A, tr) is equipped with the (unitary) representation

 $\pi \colon \mathbb{S}_{\infty} \to \mathcal{U}(\mathcal{A}), \qquad \text{such that } \mathcal{A} = \mathsf{vN}_{\pi}(\mathbb{S}_{\infty}).$

As before, $\rho := \operatorname{Ad} \pi$ is generating with fixed point algebras

$$\mathcal{A}_{n-1} = \mathcal{A}^{\operatorname{Ad} \pi(\mathbb{S}_{n+1,\infty})} = \mathcal{A} \cap (\mathsf{vN}_{\pi}(\sigma_k | k > n))'.$$

Theorem (Gohm & K '09)

$$\mathcal{A}_{-1} = \mathcal{Z}(\mathcal{A}) \qquad \qquad \mathcal{A}_n = \mathcal{A}_0 \lor \mathsf{vN}_{\pi}(\mathbb{S}_{n+1})$$

Claus Köstler Noncommutative independence from S_{∞}

Suppose the tracial probability space (A, tr) is equipped with the (unitary) representation

 $\pi\colon \mathbb{S}_\infty \to \mathcal{U}(\mathcal{A}), \qquad \text{such that } \mathcal{A} = \mathsf{vN}_\pi(\mathbb{S}_\infty).$

As before, $\rho := \operatorname{Ad} \pi$ is generating with fixed point algebras

$$\mathcal{A}_{n-1} = \mathcal{A}^{\operatorname{Ad} \pi(\mathbb{S}_{n+1,\infty})} = \mathcal{A} \cap (\mathsf{vN}_{\pi}(\sigma_k | k > n))'.$$

Theorem (Gohm & K '09)

$$\mathcal{A}_{-1} = \mathcal{Z}(\mathcal{A})$$
 $\mathcal{A}_n = \mathcal{A}_0 \lor \mathsf{vN}_{\pi}(\mathbb{S}_{n+1})$
Moreover: $\mathcal{A}_{-1} = \mathsf{vN}(C_k \mid k \in \mathbb{N})$, where $C_k := E_{-1}(\mathcal{A}_0^{k-1})$,

NOTATION: E_n is the tr-preserving conditional expectation from \mathcal{A} onto $\mathcal{A}_{n} = -2$

Suppose the tracial probability space (A, tr) is equipped with the (unitary) representation

 $\pi\colon \mathbb{S}_\infty \to \mathcal{U}(\mathcal{A}), \qquad \text{such that } \mathcal{A} = \mathsf{vN}_\pi(\mathbb{S}_\infty).$

As before, $\rho := \operatorname{Ad} \pi$ is generating with fixed point algebras

$$\mathcal{A}_{n-1} = \mathcal{A}^{\operatorname{Ad} \pi(\mathbb{S}_{n+1,\infty})} = \mathcal{A} \cap (\mathsf{vN}_{\pi}(\sigma_k | k > n))'.$$

Theorem (Gohm & K '09)

$$\mathcal{A}_{-1} = \mathcal{Z}(\mathcal{A}) \qquad \qquad \mathcal{A}_n = \mathcal{A}_0 \lor \mathsf{vN}_{\pi}(\mathbb{S}_{n+1})$$

Moreover: $\mathcal{A}_{-1} = \mathsf{vN}(C_k \mid k \in \mathbb{N})$, where $C_k := E_{-1}(\mathcal{A}_0^{k-1})$, $\mathcal{A}_0 = \mathsf{vN}(\mathcal{A}_0, C_k \mid k \in \mathbb{N})$, where $\mathcal{A}_0 := E_0(\pi(0, 1))$.

NOTATION: E_n is the tr-preserving conditional expectation from A onto $A_{n} = -\infty$

Cycles

The transposition $\gamma_i := (0, i)$, for $i \in \mathbb{N}$, is called a **star generator** and γ_0 denotes the unity in \mathbb{S}_n .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Cycles

The transposition $\gamma_i := (0, i)$, for $i \in \mathbb{N}$, is called a **star generator** and γ_0 denotes the unity in \mathbb{S}_n .

Lemma (Irving & Rattan '06, Gohm & K '09) Let $k \ge 2$. A k-cycle $\sigma = (n_1, n_2, n_3, \dots, n_k) \in \mathbb{S}_{\infty}$ is of the form

$$\sigma = \gamma_{n_1} \gamma_{n_2} \gamma_{n_3} \cdots \gamma_{n_{k-1}} \gamma_{n_k} \gamma_{n_1},$$

provided that $n_1 = 0$ if $\sigma(0) \neq 0$.

(ロ) (同) (目) (日) (日) (の)

Cycles

The transposition $\gamma_i := (0, i)$, for $i \in \mathbb{N}$, is called a **star generator** and γ_0 denotes the unity in \mathbb{S}_n .

Lemma (Irving & Rattan '06, Gohm & K '09) Let $k \ge 2$. A k-cycle $\sigma = (n_1, n_2, n_3, \dots, n_k) \in \mathbb{S}_{\infty}$ is of the form

$$\sigma = \gamma_{n_1} \gamma_{n_2} \gamma_{n_3} \cdots \gamma_{n_{k-1}} \gamma_{n_k} \gamma_{n_1},$$

provided that $n_1 = 0$ if $\sigma(0) \neq 0$.

Corollary

Disjoint cycles are supported by disjoint sets of star generators.

Cycles & Independence

Theorem (Gohm & K)

Let I, J be subsets of \mathbb{N}_0 . Then $vN_{\pi}(\gamma_i \mid i \in I)$ and $vN_{\pi}(\gamma_j \mid j \in J)$ are \mathcal{A}_0 -independent whenever $I \cap J = \emptyset$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQ@

Cycles & Independence

Theorem (Gohm & K)

Let I, J be subsets of \mathbb{N}_0 . Then $vN_{\pi}(\gamma_i \mid i \in I)$ and $vN_{\pi}(\gamma_j \mid j \in J)$ are \mathcal{A}_0 -independent whenever $I \cap J = \emptyset$.

Corollary

Let σ and τ be disjoint cycles in \mathbb{S}_{∞} . Then $vN_{\pi}(\sigma)$ and $vN_{\pi}(\tau)$ are \mathcal{A}_{0} -independent.

Cycles & Independence

Theorem (Gohm & K)

Let I, J be subsets of \mathbb{N}_0 . Then $vN_{\pi}(\gamma_i \mid i \in I)$ and $vN_{\pi}(\gamma_j \mid j \in J)$ are \mathcal{A}_0 -independent whenever $I \cap J = \emptyset$.

Corollary

Let σ and τ be disjoint cycles in \mathbb{S}_{∞} . Then $vN_{\pi}(\sigma)$ and $vN_{\pi}(\tau)$ are \mathcal{A}_{0} -independent.

Notation

Let $\pi \colon \mathbb{S}_\infty \to \mathcal{U}(\mathcal{A})$ be a (unitary) representation as before. Put

 $\mathbf{v}_i := \pi(\gamma_i).$

Let E_n denote the tr-preserving conditional expectation from $\mathcal{A} = vN_{\pi}(\mathbb{S}_{\infty})$ onto the fixed point algebra \mathcal{A}_n .

... are the crucial tool for identifying all fixed point algebras \mathcal{A}_n .

Claus Köstler Noncommutative independence from \mathbb{S}_{∞}

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

... are the crucial tool for identifying all fixed point algebras A_n . Definition (Gohm & K '09) Suppose $v_{n_1}v_{n_2}\cdots v_{n_k}v_{n_1} \in A$ is a k-cycle with $k \ge 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

... are the crucial tool for identifying all fixed point algebras A_n . Definition (Gohm & K '09)

Suppose $v_{n_1}v_{n_2}\cdots v_{n_k}v_{n_1}\in \mathcal{A}$ is a k-cycle with $k\geq 1$. Then

$$E_{n-1}(v_{n_1}v_{n_2}v_{n_3}\cdots v_{n_k}v_{n_1}), \qquad n \in \mathbb{N}_0,$$

is called a **limit** *k*-cycle.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQ@

... are the crucial tool for identifying all fixed point algebras A_n . Definition (Gohm & K '09)

Suppose $v_{n_1}v_{n_2}\cdots v_{n_k}v_{n_1}\in \mathcal{A}$ is a k-cycle with $k\geq 1$. Then

$$E_{n-1}(v_{n_1}v_{n_2}v_{n_3}\cdots v_{n_k}v_{n_1}), \qquad n\in\mathbb{N}_0,$$

is called a **limit** *k*-**cycle**. A limit *k*-cycle is **trivial** if it is a scalar multiple of the identity.

(ロ) (四) (三) (三) (三) (三) (○) (○)

... are the crucial tool for identifying all fixed point algebras A_n . Definition (Gohm & K '09)

Suppose $v_{n_1}v_{n_2}\cdots v_{n_k}v_{n_1}\in \mathcal{A}$ is a k-cycle with $k\geq 1$. Then

$$E_{n-1}(v_{n_1}v_{n_2}v_{n_3}\cdots v_{n_k}v_{n_1}), \qquad n\in\mathbb{N}_0,$$

is called a **limit** *k*-**cycle**. A limit *k*-cycle is **trivial** if it is a scalar multiple of the identity.

Remarks

• Every k-cycle is a limit k-cycle for n sufficiently large.

(ロ) (同) (目) (日) (日) (の)

... are the crucial tool for identifying all fixed point algebras A_n . Definition (Gohm & K '09)

Suppose $v_{n_1}v_{n_2}\cdots v_{n_k}v_{n_1}\in \mathcal{A}$ is a k-cycle with $k\geq 1$. Then

$$E_{n-1}(v_{n_1}v_{n_2}v_{n_3}\cdots v_{n_k}v_{n_1}), \qquad n\in\mathbb{N}_0,$$

is called a **limit** *k*-**cycle**. A limit *k*-cycle is **trivial** if it is a scalar multiple of the identity.

Remarks

- Every k-cycle is a limit k-cycle for n sufficiently large.
- Limit *k*-cycles are certain mean ergodic averages of *k*-cycles. (Compare 'random cycles' in Okounkov's thesis.)

(ロ) (同) (目) (日) (日) (の)

... are the crucial tool for identifying all fixed point algebras A_n . Definition (Gohm & K '09)

Suppose $v_{n_1}v_{n_2}\cdots v_{n_k}v_{n_1}\in \mathcal{A}$ is a k-cycle with $k\geq 1$. Then

$$E_{n-1}(v_{n_1}v_{n_2}v_{n_3}\cdots v_{n_k}v_{n_1}), \qquad n\in\mathbb{N}_0,$$

is called a **limit** *k*-**cycle**. A limit *k*-cycle is **trivial** if it is a scalar multiple of the identity.

Remarks

- Every k-cycle is a limit k-cycle for n sufficiently large.
- Limit *k*-cycles are certain mean ergodic averages of *k*-cycles. (Compare 'random cycles' in Okounkov's thesis.)
- Limit cycles generate a monoid similar to Olshanski semigroups.

Lemma (One-shifted representation n = 1) $E_0(v_{n_1}v_{n_2}v_{n_3}\cdots v_{n_k}v_{n_1}) = \begin{cases} E_0(v_1)^{k-1} & \text{if } n_1 = 0\\ E_{-1}(E_0(v_1)^{k-1}) & \text{if } n_1 \neq 0 \end{cases}$

Lemma (One-shifted representation n = 1) $E_0(v_{n_1}v_{n_2}v_{n_3}\cdots v_{n_k}v_{n_1}) = \begin{cases} E_0(v_1)^{k-1} & \text{if } n_1 = 0\\ E_{-1}(E_0(v_1)^{k-1}) & \text{if } n_1 \neq 0 \end{cases}$

Proof. The v_i 's are \mathcal{A}_0 -independent.

Claus Köstler Noncommutative independence from S_{∞}

Lemma (One-shifted representation n = 1) $E_0(v_{n_1}v_{n_2}v_{n_3}\cdots v_{n_k}v_{n_1}) = \begin{cases} E_0(v_1)^{k-1} & \text{if } n_1 = 0\\ E_{-1}(E_0(v_1)^{k-1}) & \text{if } n_1 \neq 0 \end{cases}$

Proof.

The v_i 's are \mathcal{A}_0 -independent. Thus

$$(L.H.S.) = E_0(v_{n_1}E_0(v_1)^{k-1}v_{n_1}).$$

Claus Köstler Noncommutative independence from S_{∞}

Lemma (One-shifted representation n = 1) $E_0(v_{n_1}v_{n_2}v_{n_3}\cdots v_{n_k}v_{n_1}) = \begin{cases} E_0(v_1)^{k-1} & \text{if } n_1 = 0\\ E_{-1}(E_0(v_1)^{k-1}) & \text{if } n_1 \neq 0 \end{cases}$

Proof.

The v_i 's are \mathcal{A}_0 -independent. Thus

$$(L.H.S.) = E_0(v_{n_1}E_0(v_1)^{k-1}v_{n_1}).$$

But this equals (*R*.*H*.*S*.), since $v_i x v_i = \alpha_0^i(x)$ for $x \in A_0$ and the $\alpha_0^i(A_0)$'s are A_{-1} -independent.

Lemma (One-shifted representation n = 1) $E_0(v_{n_1}v_{n_2}v_{n_3}\cdots v_{n_k}v_{n_1}) = \begin{cases} E_0(v_1)^{k-1} & \text{if } n_1 = 0\\ E_{-1}(E_0(v_1)^{k-1}) & \text{if } n_1 \neq 0 \end{cases}$

Proof.

The v_i 's are \mathcal{A}_0 -independent. Thus

$$(L.H.S.) = E_0(v_{n_1}E_0(v_1)^{k-1}v_{n_1}).$$

But this equals (*R*.*H*.*S*.), since $v_i x v_i = \alpha_0^i(x)$ for $x \in A_0$ and the $\alpha_0^i(A_0)$'s are A_{-1} -independent.

Corollary (Zero-shifted representation n = 0) $E_{-1}(v_{n_1}v_{n_2}v_{n_3}\cdots v_{n_k}v_{n_1}) = E_{-1}(E_0(v_1)^{k-1})$

Claus Köstler

Noncommutative independence from \mathbb{S}_∞

Distinguished roles are played by the limit 2-cycle

$$A_0 := E_0(v_1) = E_0(\pi(0,1))$$

Distinguished roles are played by the limit 2-cycle

$$A_0 := E_0(v_1) = E_0(\pi(0,1))$$

and the limit k-cycles

$$C_k := E_{-1}(A_0^{k-1}) = E_{-1}(\pi(0, 1, \dots, k-1)).$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ◆ ●

Distinguished roles are played by the limit 2-cycle

$$A_0 := E_0(v_1) = E_0(\pi(0,1))$$

and the limit k-cycles

$$C_k := E_{-1}(A_0^{k-1}) = E_{-1}(\pi(0,1,\ldots,k-1)).$$

Corollary

Suppose π is non-trivial.

Claus Köstler Noncommutative independence from S_{∞}

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Distinguished roles are played by the limit 2-cycle

$$A_0 := E_0(v_1) = E_0(\pi(0,1))$$

and the limit k-cycles

$$C_k := E_{-1}(A_0^{k-1}) = E_{-1}(\pi(0,1,\ldots,k-1)).$$

Corollary

Suppose π is non-trivial.

(i) All C_k 's are trivial $\Leftrightarrow vN_{\pi}(\mathbb{S}_{\infty})$ is a II₁ factor

Claus Köstler Noncommutative independence from \mathbb{S}_{∞}

(ロ) (同) (目) (日) (日) (の)

Distinguished roles are played by the limit 2-cycle

$$A_0 := E_0(v_1) = E_0(\pi(0,1))$$

and the limit k-cycles

$$C_k := E_{-1}(A_0^{k-1}) = E_{-1}(\pi(0, 1, \dots, k-1)).$$

Corollary

Suppose π is non-trivial.

(i) All C_k 's are trivial $\Leftrightarrow vN_{\pi}(\mathbb{S}_{\infty})$ is a II₁ factor \Rightarrow Fixed point algebra \mathcal{A}_0 is generated by the limit cycle \mathcal{A}_0 .

Distinguished roles are played by the limit 2-cycle

$$A_0 := E_0(v_1) = E_0(\pi(0,1))$$

and the limit k-cycles

$$C_k := E_{-1}(A_0^{k-1}) = E_{-1}(\pi(0, 1, \dots, k-1)).$$

Corollary

Suppose π is non-trivial.

The limit cycles

$$C_k = E_{-1}(A_0^{k-1})$$

depend only on k.

Claus Köstler Noncommutative independence from \mathbb{S}_{∞}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The limit cycles

$$C_k = E_{-1}(A_0^{k-1})$$

depend only on k.

Corollary (Thoma Multiplicativity)

Let $m_k(\sigma)$ be the number of k-cycles in the cycle decomposition of the permutation $\sigma \in \mathbb{S}_{\infty}$.

The limit cycles

$$C_k = E_{-1}(A_0^{k-1})$$

depend only on k.

Corollary (Thoma Multiplicativity)

Let $m_k(\sigma)$ be the number of k-cycles in the cycle decomposition of the permutation $\sigma \in \mathbb{S}_{\infty}$. Then

$$E_{-1}(\pi(\sigma)) = \prod_{k=2}^{\infty} C_k^{m_k(\sigma)}$$

イロト イボト イヨト イヨト 二日

The limit cycles

$$C_k = E_{-1}(A_0^{k-1})$$

depend only on k.

Corollary (Thoma Multiplicativity)

Let $m_k(\sigma)$ be the number of k-cycles in the cycle decomposition of the permutation $\sigma \in \mathbb{S}_{\infty}$. Then

$$E_{-1}(\pi(\sigma)) = \prod_{k=2}^{\infty} C_k^{m_k(\sigma)}$$

Remarks

• E_{-1} is a center-valued trace.

(ロ) (同) (目) (日) (日) (の)

The limit cycles

$$C_k = E_{-1}(A_0^{k-1})$$

depend only on k.

Corollary (Thoma Multiplicativity)

Let $m_k(\sigma)$ be the number of k-cycles in the cycle decomposition of the permutation $\sigma \in \mathbb{S}_{\infty}$. Then

$$\mathsf{E}_{-1}(\pi(\sigma)) = \prod_{k=2}^{\infty} C_k^{m_k(\sigma)}$$

Remarks

- E_{-1} is a center-valued trace.
- If vN_ $\pi(\mathbb{S}_{\infty})$ is a factor, then E_{-1} can be replaced by the tracial state tr:

$$\operatorname{tr}(\pi(\sigma)) = \prod_{k \ge 2} \left(\operatorname{tr}(A_0^{k-1}) \right)^{m_k(\sigma)}$$

Theorem (Gohm & K '09)

Let \mathcal{M}_0 be a von Neumann subalgebra of the finite factor \mathcal{M} . Suppose the unitary $u \in \mathcal{M}$ satisfies:

(ロ) (四) (三) (三) (三) (三) (○) (○)

Theorem (Gohm & K '09)

Let \mathcal{M}_0 be a von Neumann subalgebra of the finite factor \mathcal{M} . Suppose the unitary $u \in \mathcal{M}$ satisfies:

1. *u* implements the commuting square

 $u\mathcal{M}_{\cap}u^* \subset \mathcal{M}$ $\begin{array}{ccc} \cup & & \cup \\ \mathbb{C} & \subset & \mathcal{M}_0 \end{array},$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQ@

Theorem (Gohm & K '09)

Let \mathcal{M}_0 be a von Neumann subalgebra of the finite factor \mathcal{M} . Suppose the unitary $u \in \mathcal{M}$ satisfies:

- 1. *u* implements the commuting square
- 2. the contraction $E_{\mathcal{M}_0}(u)$ is a normal.

NOTATION: $E_{\mathcal{M}_0}$ is the trace-preserving cond. expectation from \mathcal{M} onto \mathcal{M}_0 .

 $\begin{array}{rcl} u\mathcal{M}_{0}u^{*} & \subset & \mathcal{M} \\ & \cup & & \cup & , \end{array}$

 $\mathbb{C} \subset \mathcal{M}_{0}$

Theorem (Gohm & K '09)

Let \mathcal{M}_0 be a von Neumann subalgebra of the finite factor \mathcal{M} . Suppose the unitary $u \in \mathcal{M}$ satisfies:

1. *u* implements the commuting square

2. the contraction $E_{\mathcal{M}_0}(u)$ is a normal.

Then $E_{\mathcal{M}_0}(u)$ has discrete spectrum which may accumulate only at the point 0.

NOTATION: $E_{\mathcal{M}_0}$ is the trace-preserving cond. expectation from \mathcal{M} onto \mathcal{M}_0 .

 $\begin{array}{rccc} u\mathcal{M}_{0}u^{*} & \subset & \mathcal{M} \\ & \cup & & \cup & , \end{array}$

 $\mathbb{C} \subset \mathcal{M}_0$

Theorem (Gohm & K '09)

Let \mathcal{M}_0 be a von Neumann subalgebra of the finite factor \mathcal{M} . Suppose the unitary $u \in \mathcal{M}$ satisfies:

1. *u* implements the commuting square

2. the contraction $E_{\mathcal{M}_0}(u)$ is a normal.

Then $E_{\mathcal{M}_0}(u)$ has discrete spectrum which may accumulate only at the point 0.

NOTATION: $E_{\mathcal{M}_0}$ is the trace-preserving cond. expectation from \mathcal{M} onto \mathcal{M}_0 .

Corollary (Okounkov '97, Gohm & K '09)

Suppose $vN_{\pi}(\mathbb{S}_{\infty})$ is a factor. Then the limit 2-cycle $A_0 = E_0(v_1)$ has discrete spectrum which may only accumulate at the point 0.

 $\begin{array}{rccc} u\mathcal{M}_{0}u^{*} & \subset & \mathcal{M} \\ & \cup & & \cup & , \end{array}$

 $\mathbb{C} \subset \mathcal{M}_{0}$

Thoma measures

Definition

A discrete probability measure μ on [-1,1] satisfying

$$rac{\mu(t)}{|t|} \in \mathbb{N}_0 \qquad (t
eq 0)$$

is called a Thoma measure.

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ

Thoma measures

Definition

A discrete probability measure μ on [-1,1] satisfying

$$rac{\mu(t)}{|t|} \in \mathbb{N}_0 \qquad (t
eq 0)$$

is called a Thoma measure.

Theorem (Okounkov '97, Gohm & K '09)

Suppose $vN_{\pi}(\mathbb{S}_{\infty})$ is a factor with tracial state tr. Then the spectral measure μ of the limit 2-cycle A_0 with respect to tr is a Thoma measure.

The spectral measure μ is supported on the spectral values of A_0 .

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ◆ ●

The spectral measure μ is supported on the spectral values of A_0 . Denote by a_i , $-b_i$ with $a_i > 0$ and $b_i > 0$ the non-zero elements in supp μ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The spectral measure μ is supported on the spectral values of A_0 . Denote by a_i , $-b_i$ with $a_i > 0$ and $b_i > 0$ the non-zero elements in supp μ . By the previous theorem,

$$u(t):=\mu(t)/|t|\in\mathbb{N}_0.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQ@

The spectral measure μ is supported on the spectral values of A_0 . Denote by a_i , $-b_i$ with $a_i > 0$ and $b_i > 0$ the non-zero elements in supp μ . By the previous theorem,

$$u(t) := \mu(t)/|t| \in \mathbb{N}_0.$$

Thus we have the identity

$$tr(A_0^{k-1}) = \sum_i \left(a_i^{k-1}\mu(a_i) + (-b_i)^{k-1}\mu(-b_i)\right)$$

(ロ) (四) (三) (三) (三) (三) (○) (○)

The spectral measure μ is supported on the spectral values of A_0 . Denote by a_i , $-b_i$ with $a_i > 0$ and $b_i > 0$ the non-zero elements in supp μ . By the previous theorem,

$$u(t) := \mu(t)/|t| \in \mathbb{N}_0.$$

Thus we have the identity

$$\operatorname{tr}(A_0^{k-1}) = \sum_i \left(a_i^{k-1} \mu(a_i) + (-b_i)^{k-1} \mu(-b_i) \right)$$
$$= \sum_i a_i^k \nu(a_i) + (-1)^{k-1} \sum_i b_i^k \nu(-b_i)$$

for every k > 1.

Claus Köstler Noncommutative independence from \mathbb{S}_{∞}

The spectral measure μ is supported on the spectral values of A_0 . Denote by a_i , $-b_i$ with $a_i > 0$ and $b_i > 0$ the non-zero elements in supp μ . By the previous theorem,

$$u(t) := \mu(t)/|t| \in \mathbb{N}_0.$$

Thus we have the identity

$$\operatorname{tr}(A_0^{k-1}) = \sum_i \left(a_i^{k-1} \mu(a_i) + (-b_i)^{k-1} \mu(-b_i) \right)$$
$$= \sum_i a_i^k \nu(a_i) + (-1)^{k-1} \sum_i b_i^k \nu(-b_i)$$

for every k > 1. One recovers from this the traditional form of the Thoma theorem, by writing spectral values with multiplicities.

Let B be a complete Boolean algebra. In this talk: $B = 2^{\mathbb{N}}$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ◆ ●

Let B be a complete Boolean algebra. In this talk: $B = 2^{\mathbb{N}}$. Given the (tracial) probability space (\mathcal{A}, φ) , let $\mathcal{R}(\mathcal{A}, \varphi)$ denote the complete lattice of von Neumann subalgebras of \mathcal{A} .

Let *B* be a complete Boolean algebra. In this talk: $B = 2^{\mathbb{N}}$. Given the (tracial) probability space (\mathcal{A}, φ) , let $\mathcal{R}(\mathcal{A}, \varphi)$ denote the complete lattice of von Neumann subalgebras of \mathcal{A} . A map $F: B \to \mathcal{R}(\mathcal{A}, \varphi)$ is called a **factorization of** (\mathcal{A}, φ) **over** \mathcal{N} if the following conditions are satisfied for all $b, b_1, b_2 \in B$:

Let *B* be a complete Boolean algebra. In this talk: $B = 2^{\mathbb{N}}$. Given the (tracial) probability space (\mathcal{A}, φ) , let $\mathcal{R}(\mathcal{A}, \varphi)$ denote the complete lattice of von Neumann subalgebras of \mathcal{A} . A map $F: B \to \mathcal{R}(\mathcal{A}, \varphi)$ is called a **factorization of** (\mathcal{A}, φ) **over** \mathcal{N} if the following conditions are satisfied for all $b, b_1, b_2 \in B$:

•
$$F(b_1) \lor F(b_2) = F(b_1 \lor b_2)$$

Let *B* be a complete Boolean algebra. In this talk: $B = 2^{\mathbb{N}}$. Given the (tracial) probability space (\mathcal{A}, φ) , let $\mathcal{R}(\mathcal{A}, \varphi)$ denote the complete lattice of von Neumann subalgebras of \mathcal{A} . A map $F: B \to \mathcal{R}(\mathcal{A}, \varphi)$ is called a **factorization of** (\mathcal{A}, φ) **over** \mathcal{N} if the following conditions are satisfied for all $b, b_1, b_2 \in B$:

•
$$F(b_1) \vee F(b_2) = F(b_1 \vee b_2)$$

•
$$F(b_1) \cap F(b_2) = F(b_1 \wedge b_2)$$

Let *B* be a complete Boolean algebra. In this talk: $B = 2^{\mathbb{N}}$. Given the (tracial) probability space (\mathcal{A}, φ) , let $\mathcal{R}(\mathcal{A}, \varphi)$ denote the complete lattice of von Neumann subalgebras of \mathcal{A} . A map $F: B \to \mathcal{R}(\mathcal{A}, \varphi)$ is called a **factorization of** (\mathcal{A}, φ) **over** \mathcal{N} if the following conditions are satisfied for all $b, b_1, b_2 \in B$:

•
$$F(b_1) \vee F(b_2) = F(b_1 \vee b_2)$$

•
$$F(b_1) \cap F(b_2) = F(b_1 \wedge b_2)$$

•
$$F(0_B) = \mathcal{N}$$

Let *B* be a complete Boolean algebra. In this talk: $B = 2^{\mathbb{N}}$. Given the (tracial) probability space (\mathcal{A}, φ) , let $\mathcal{R}(\mathcal{A}, \varphi)$ denote the complete lattice of von Neumann subalgebras of \mathcal{A} . A map $F: B \to \mathcal{R}(\mathcal{A}, \varphi)$ is called a **factorization of** (\mathcal{A}, φ) **over** \mathcal{N} if the following conditions are satisfied for all $b, b_1, b_2 \in B$:

•
$$F(b_1) \vee F(b_2) = F(b_1 \vee b_2)$$

•
$$F(b_1) \cap F(b_2) = F(b_1 \wedge b_2)$$

•
$$F(0_B) = \mathcal{N}$$

•
$$F(1_B) = \mathcal{A}$$

Let *B* be a complete Boolean algebra. In this talk: $B = 2^{\mathbb{N}}$. Given the (tracial) probability space (\mathcal{A}, φ) , let $\mathcal{R}(\mathcal{A}, \varphi)$ denote the complete lattice of von Neumann subalgebras of \mathcal{A} . A map $F: B \to \mathcal{R}(\mathcal{A}, \varphi)$ is called a **factorization of** (\mathcal{A}, φ) **over** \mathcal{N} if the following conditions are satisfied for all $b, b_1, b_2 \in B$:

•
$$F(b_1) \lor F(b_2) = F(b_1 \lor b_2)$$

- $F(b_1) \cap F(b_2) = F(b_1 \wedge b_2)$
- $F(0_B) = \mathcal{N}$
- $F(1_B) = \mathcal{A}$
- F(b) and F(b') are \mathcal{N} -independent

Let *B* be a complete Boolean algebra. In this talk: $B = 2^{\mathbb{N}}$. Given the (tracial) probability space (\mathcal{A}, φ) , let $\mathcal{R}(\mathcal{A}, \varphi)$ denote the complete lattice of von Neumann subalgebras of \mathcal{A} . A map $F: B \to \mathcal{R}(\mathcal{A}, \varphi)$ is called a **factorization of** (\mathcal{A}, φ) **over** \mathcal{N} if the following conditions are satisfied for all $b, b_1, b_2 \in B$:

•
$$F(b_1) \vee F(b_2) = F(b_1 \vee b_2)$$

•
$$F(b_1) \cap F(b_2) = F(b_1 \wedge b_2)$$

- $F(0_B) = \mathcal{N}$
- $F(1_B) = \mathcal{A}$
- F(b) and F(b') are \mathcal{N} -independent

A suitable continuity condition needs to be stipulated for a relevant class of sets $S \subset B$, if B is not finite. Here: S are all finite subsets of \mathbb{N} and the continuity condition is $\bigvee_{s \in S} F(s) = \mathcal{A}$.

Factorizations from unitary representations of \mathbb{S}_∞

Theorem (K)

Let (\mathcal{A}, φ) be a tracial probability space equipped with a representation $\pi \colon \mathbb{S}_{\infty} \to \mathcal{U}(\mathcal{A})$ such that $\mathcal{A} = \mathsf{vN}_{\pi}(\mathbb{S}_{\infty})$.

Claus Köstler Noncommutative independence from \mathbb{S}_{∞}

Factorizations from unitary representations of \mathbb{S}_∞

Theorem (K)

Let (\mathcal{A}, φ) be a tracial probability space equipped with a representation $\pi \colon \mathbb{S}_{\infty} \to \mathcal{U}(\mathcal{A})$ such that $\mathcal{A} = \mathsf{vN}_{\pi}(\mathbb{S}_{\infty})$. Put

$$A_0 := \text{ sot-} \lim_{n \to \infty} \frac{1}{n} (\pi(0,1) + \pi(0,2) + \ldots + \pi(0,n))$$

Theorem (K)

Let (\mathcal{A}, φ) be a tracial probability space equipped with a representation $\pi \colon \mathbb{S}_{\infty} \to \mathcal{U}(\mathcal{A})$ such that $\mathcal{A} = \mathsf{vN}_{\pi}(\mathbb{S}_{\infty})$. Put

$$\begin{array}{lll} \mathcal{A}_0 & := & \text{sot-} \lim_{n \to \infty} \frac{1}{n} \big(\pi(0,1) + \pi(0,2) + \ldots + \pi(0,n) \big) \\ \mathcal{N} & := & \mathsf{vN}(\mathcal{A}_0) \lor \mathcal{E}_{\mathcal{Z}(\mathcal{A})}(\mathsf{vN}(\mathcal{A}_0)) \end{array}$$

Theorem (K)

Let (\mathcal{A}, φ) be a tracial probability space equipped with a representation $\pi \colon \mathbb{S}_{\infty} \to \mathcal{U}(\mathcal{A})$ such that $\mathcal{A} = \mathsf{vN}_{\pi}(\mathbb{S}_{\infty})$. Put

$$\begin{array}{rcl} A_{0} & := & \text{sot-} \lim_{n \to \infty} \frac{1}{n} \big(\pi(0,1) + \pi(0,2) + \ldots + \pi(0,n) \big) \\ \mathcal{N} & := & \mathsf{vN}(A_{0}) \lor E_{\mathcal{Z}(\mathcal{A})}(\mathsf{vN}(A_{0})) \\ F(I) & := & \mathsf{vN}_{\pi} \left((0,i) \mid i \in I \right) \lor \mathcal{N} \qquad (I \subset \mathbb{N}_{0}) \end{array}$$

Theorem (K)

Let (\mathcal{A}, φ) be a tracial probability space equipped with a representation $\pi \colon \mathbb{S}_{\infty} \to \mathcal{U}(\mathcal{A})$ such that $\mathcal{A} = \mathsf{vN}_{\pi}(\mathbb{S}_{\infty})$. Put

$$\begin{array}{rcl} A_0 & := & \operatorname{SOT-} \lim_{n \to \infty} \frac{1}{n} \big(\pi(0,1) + \pi(0,2) + \ldots + \pi(0,n) \big) \\ \mathcal{N} & := & \operatorname{vN}(A_0) \lor E_{\mathcal{Z}(\mathcal{A})}(\operatorname{vN}(A_0)) \\ F(I) & := & \operatorname{vN}_{\pi} \big((0,i) \mid i \in I \big) \lor \mathcal{N} \qquad (I \subset \mathbb{N}_0) \end{array}$$

Then

ŀ

$$F: 2^{\mathbb{N}} \to \mathcal{R}(\mathcal{A}, \varphi)$$

is a factorization of (\mathcal{A}, φ) over \mathcal{N} .

References

C. Köstler. A noncommutative extended de Finetti theorem. J. Funct. Anal. 258, 1073-1120 (2010) (electronic: arXiv:0806.3621v1)

R. Gohm & C. Köstler. Noncommutative independence from the braid group \mathbb{B}_{∞} . Commun. Math. Phys. **289**, 435–482 (2009) (electronic: arXiv:0806.3691v2)

R. Gohm & C. Köstler. Noncommutative independence from characters of the symmetric group \mathbb{S}_{∞} . 47 pages. Preprint (2010). (electronic: arXiv:1005.5726)

Thank you!

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの