Noncommutative independence from characters of the infinite symmetric group \mathbb{S}_{∞}

Claus Köstler
Institute of Mathematics and Physics
Aberystwyth University, Wales
cck@aber.ac.uk
(joint with Rolf Gohm)

ICM Satellite Conference 2010 on
Quantum Probability and Related Topics JNCASR, Bangalore

August 14, 2010

Exchangeability in classical probability

The random variables $\left(X_{n}\right)_{n \geq 0}$ are said to be exchangeable if

$$
\mathbb{E}\left(X_{\mathbf{i}(1)} \cdots X_{\mathbf{i}(n)}\right)=\mathbb{E}\left(X_{\sigma(\mathbf{i}(1))} \cdots X_{\sigma(\mathbf{i}(n))}\right) \quad\left(\sigma \in \mathbb{S}_{\infty}\right)
$$

for all n-tuples $\mathbf{i}:\{1,2, \ldots, n\} \rightarrow \mathbb{N}_{0}$ and $n \in \mathbb{N}$.

Exchangeability in classical probability

The random variables $\left(X_{n}\right)_{n \geq 0}$ are said to be exchangeable if

$$
\mathbb{E}\left(X_{\mathbf{i}(1)} \cdots X_{\mathbf{i}(n)}\right)=\mathbb{E}\left(X_{\sigma(\mathbf{i}(1))} \cdots X_{\sigma(\mathbf{i}(n))}\right) \quad\left(\sigma \in \mathbb{S}_{\infty}\right)
$$

for all n-tuples $\mathbf{i}:\{1,2, \ldots, n\} \rightarrow \mathbb{N}_{0}$ and $n \in \mathbb{N}$.
Theorem (De Finetti 1931,...)
The law of an exchangeable sequence $\left(X_{n}\right)_{n \geq 0}$ is given by a unique convex combination of infinite product measures.

Exchangeability in classical probability

The random variables $\left(X_{n}\right)_{n \geq 0}$ are said to be exchangeable if

$$
\mathbb{E}\left(X_{\mathbf{i}(1)} \cdots X_{\mathbf{i}(n)}\right)=\mathbb{E}\left(X_{\sigma(\mathbf{i}(1))} \cdots X_{\sigma(\mathbf{i}(n))}\right) \quad\left(\sigma \in \mathbb{S}_{\infty}\right)
$$

for all n-tuples $\mathbf{i}:\{1,2, \ldots, n\} \rightarrow \mathbb{N}_{0}$ and $n \in \mathbb{N}$.
Theorem (De Finetti 1931,...)
The law of an exchangeable sequence $\left(X_{n}\right)_{n \geq 0}$ is given by a unique convex combination of infinite product measures.
"Any exchangeable process is an average of i.i.d. processes."

Exchangeability in noncommutative probability

Given the tracial W^{*}-algebraic probability space (\mathcal{A}, φ) the selfadjoint operators $\left(x_{n}\right)_{n \geq 0} \subset \mathcal{A}$ are exchangeable if

$$
\varphi\left(x_{\mathbf{i}(1)} \cdots x_{\mathbf{i}(n)}\right)=\varphi\left(x_{\sigma(\mathbf{i}(1))} \cdots x_{\sigma(\mathbf{i}(n))}\right) \quad\left(\sigma \in \mathbb{S}_{\infty}\right)
$$

for all n-tuples $\mathbf{i}:\{1,2, \ldots, n\} \rightarrow \mathbb{N}_{0}$ and $n \in \mathbb{N}$.

Exchangeability in noncommutative probability

Given the tracial W^{*}-algebraic probability space (\mathcal{A}, φ) the selfadjoint operators $\left(x_{n}\right)_{n \geq 0} \subset \mathcal{A}$ are exchangeable if

$$
\varphi\left(x_{\mathbf{i}(1)} \cdots x_{\mathbf{i}(n)}\right)=\varphi\left(x_{\sigma(\mathbf{i}(1))} \cdots x_{\sigma(\mathbf{i}(n))}\right) \quad\left(\sigma \in \mathbb{S}_{\infty}\right)
$$

for all n-tuples $\mathbf{i}:\{1,2, \ldots, n\} \rightarrow \mathbb{N}_{0}$ and $n \in \mathbb{N}$.
Theorem (K 2009)
An exchangeable sequence $\left(x_{n}\right)_{n \geq 0} \subset(\mathcal{A}, \varphi)$ is \mathcal{T}-independent, where

$$
\mathcal{T}=\bigcap_{n \geq 0} \mathrm{vN}\left(x_{n}, x_{n+1}, x_{n+2}, \ldots\right)
$$

is the tail algebra of the sequence.

Exchangeability in noncommutative probability

Given the tracial W^{*}-algebraic probability space (\mathcal{A}, φ) the selfadjoint operators $\left(x_{n}\right)_{n \geq 0} \subset \mathcal{A}$ are exchangeable if

$$
\varphi\left(x_{\mathbf{i}(1)} \cdots x_{\mathbf{i}(n)}\right)=\varphi\left(x_{\sigma(\mathbf{i}(1))} \cdots x_{\sigma(\mathbf{i}(n))}\right) \quad\left(\sigma \in \mathbb{S}_{\infty}\right)
$$

for all n-tuples $\mathbf{i}:\{1,2, \ldots, n\} \rightarrow \mathbb{N}_{0}$ and $n \in \mathbb{N}$.
Theorem (K 2009)
An exchangeable sequence $\left(x_{n}\right)_{n \geq 0} \subset(\mathcal{A}, \varphi)$ is \mathcal{T}-independent, where

$$
\mathcal{T}=\bigcap_{n \geq 0} \mathrm{vN}\left(x_{n}, x_{n+1}, x_{n+2}, \ldots\right)
$$

is the tail algebra of the sequence.
"What is this noncommutative notion of \mathcal{T}-independence?!"

Noncommutative conditional independence

Definition

Let $\mathcal{N},\left(\mathcal{M}_{i}\right)_{i \in I}$ be von Neumann subalgebras of (\mathcal{A}, φ).

NOTATION: $E_{\mathcal{N}}$ is the φ-preserving cond. expectation from \mathcal{M} onto \mathcal{N}.

Noncommutative conditional independence

Definition

Let $\mathcal{N},\left(\mathcal{M}_{i}\right)_{i \in I}$ be von Neumann subalgebras of (\mathcal{A}, φ). Then the family $\left(\mathcal{M}_{i}\right)_{i \in I}$ is \mathcal{N}-independent if

$$
E_{\mathcal{N}}(x y)=E_{\mathcal{N}}(x) E_{\mathcal{N}}(y)
$$

for all $x \in \operatorname{vN}\left(\mathcal{N}, \mathcal{M}_{j} \mid j \in J\right)$ and $y \in \operatorname{vN}\left(\mathcal{N}, \mathcal{M}_{k} \mid k \in K\right)$, and disjoint subsets J, K of I.

NOTATION: $E_{\mathcal{N}}$ is the φ-preserving cond. expectation from \mathcal{M} onto \mathcal{N}.

Noncommutative conditional independence

Definition

Let $\mathcal{N},\left(\mathcal{M}_{i}\right)_{i \in I}$ be von Neumann subalgebras of (\mathcal{A}, φ). Then the family $\left(\mathcal{M}_{i}\right)_{i \in I}$ is \mathcal{N}-independent if

$$
E_{\mathcal{N}}(x y)=E_{\mathcal{N}}(x) E_{\mathcal{N}}(y)
$$

for all $x \in \operatorname{vN}\left(\mathcal{N}, \mathcal{M}_{j} \mid j \in J\right)$ and $y \in \operatorname{vN}\left(\mathcal{N}, \mathcal{M}_{k} \mid k \in K\right)$, and disjoint subsets J, K of I.

NOTATION: $E_{\mathcal{N}}$ is the φ-preserving cond. expectation from \mathcal{M} onto \mathcal{N}.
Equivalent formulation for index set $I=\{1,2\}$:

Exchangeability for the infinite symmetric group \mathbb{S}_{∞}

\mathbb{S}_{∞} is the inductive limit of the symmetric group \mathbb{S}_{n} as $n \rightarrow \infty$, acting on $\{0,1,2, \ldots\}$. A positive definite function $\chi: \mathbb{S}_{\infty} \rightarrow \mathbb{C}$ is a character if it is constant on conjugacy classes and normalized at the identity.

Exchangeability for the infinite symmetric group \mathbb{S}_{∞}

\mathbb{S}_{∞} is the inductive limit of the symmetric group \mathbb{S}_{n} as $n \rightarrow \infty$, acting on $\{0,1,2, \ldots\}$. A positive definite function $\chi: \mathbb{S}_{\infty} \rightarrow \mathbb{C}$ is a character if it is constant on conjugacy classes and normalized at the identity.

Elementary observation
Let $\gamma_{i}:=(0, i)$. Then the sequence $\left(\gamma_{i}\right)_{i \in \mathbb{N}}$ is exchangeable, i.e.

$$
\chi\left(\gamma_{\mathbf{i}(1)} \gamma_{\mathbf{i}(2)} \cdots \gamma_{\mathbf{i}(n)}\right)=\chi\left(\gamma_{\sigma(\mathbf{i}(1))} \gamma_{\sigma(\mathbf{i}(2))} \cdots \gamma_{\sigma(\mathbf{i}(n))}\right)
$$

for $\sigma \in \mathbb{S}_{\infty}$ with $\sigma(0)=0$, n-tuples $\mathbf{i}:\{1, \ldots, n\} \rightarrow \mathbb{N}$ and $n \in \mathbb{N}$.

Exchangeability for the infinite symmetric group \mathbb{S}_{∞}

\mathbb{S}_{∞} is the inductive limit of the symmetric group \mathbb{S}_{n} as $n \rightarrow \infty$, acting on $\{0,1,2, \ldots\}$. A positive definite function $\chi: \mathbb{S}_{\infty} \rightarrow \mathbb{C}$ is a character if it is constant on conjugacy classes and normalized at the identity.

Elementary observation
Let $\gamma_{i}:=(0, i)$. Then the sequence $\left(\gamma_{i}\right)_{i \in \mathbb{N}}$ is exchangeable, i.e.

$$
\chi\left(\gamma_{\mathbf{i}(1)} \gamma_{\mathbf{i}(2)} \cdots \gamma_{\mathbf{i}(n)}\right)=\chi\left(\gamma_{\sigma(\mathbf{i}(1))} \gamma_{\sigma(\mathbf{i}(2))} \cdots \gamma_{\sigma(\mathbf{i}(n))}\right)
$$

for $\sigma \in \mathbb{S}_{\infty}$ with $\sigma(0)=0$, n-tuples $\mathbf{i}:\{1, \ldots, n\} \rightarrow \mathbb{N}$ and $n \in \mathbb{N}$.
Task
Identify the convex combination of extremal characters of \mathbb{S}_{∞}. In other words: prove a noncommutative de Finetti theorem!

Thoma's theorem (1964) is a quantum de Finetti theorem!

An extremal character of the group \mathbb{S}_{∞} is of the form

$$
\chi(\sigma)=\prod_{k=2}^{\infty}\left(\sum_{i=1}^{\infty} a_{i}^{k}+(-1)^{k-1} \sum_{j=1}^{\infty} b_{j}^{k}\right)^{m_{k}(\sigma)}
$$

Here $m_{k}(\sigma)$ is the number of k-cycles in the permutation σ and the two sequences $\left(a_{i}\right)_{i=1}^{\infty},\left(b_{j}\right)_{j=1}^{\infty}$ satisfy
$a_{1} \geq a_{2} \geq \cdots \geq 0, \quad b_{1} \geq b_{2} \geq \cdots \geq 0, \quad \sum_{i=1}^{\infty} a_{i}+\sum_{j=1}^{\infty} b_{j} \leq 1$.
Alternative proofs
Vershik \& Kerov 1981: asymptotic representation theory
Okounkov 1997: Olshanski semigroups and spectral theory
A new operator algebraic proof from exchangeability
R. Gohm \& C. Köstler. Noncommutative independence from characters of the symmetric group $\mathbb{S}_{\infty} .47$ pages. Preprint (2010). (arXiv: 1005.5726)

A helpful reformulation of exchangeability

Theorem (Gohm \& K
Suppose the tracial probability space (\mathcal{A}, φ) is generated by the sequence $\left(x_{n}\right)_{n \geq 0}$. TFAE:
(a) $\left(x_{n}\right)$ is exchangeable

Remark

Above characterization generalizes easily to sequences of algebras.

A helpful reformulation of exchangeability

Theorem (Gohm \& K
Suppose the tracial probability space (\mathcal{A}, φ) is generated by the sequence $\left(x_{n}\right)_{n \geq 0}$. TFAE:
(a) $\left(x_{n}\right)$ is exchangeable
(b) there exists a representation $\rho: \mathbb{S}_{\infty} \rightarrow \operatorname{Aut}(\mathcal{A}, \varphi)$ such that

Remark

Above characterization generalizes easily to sequences of algebras.

A helpful reformulation of exchangeability

Theorem (Gohm \& K

Suppose the tracial probability space (\mathcal{A}, φ) is generated by the sequence $\left(x_{n}\right)_{n \geq 0}$. TFAE:
(a) $\left(x_{n}\right)$ is exchangeable
(b) there exists a representation $\rho: \mathbb{S}_{\infty} \rightarrow \operatorname{Aut}(\mathcal{A}, \varphi)$ such that (i) $x_{n}=\rho\left(\sigma_{n} \sigma_{n-1} \cdots \sigma_{1}\right) x_{0}$ for $n \geq 1$.

NOTATION:
σ_{i} is the Coxeter generator $(i-1, i)$ of \mathbb{S}_{∞}, where \mathbb{S}_{∞} acts on $\{0,1,2,3, \ldots\}$ by permutations.

Remark

Above characterization generalizes easily to sequences of algebras.

A helpful reformulation of exchangeability

Theorem (Gohm \& K

Suppose the tracial probability space (\mathcal{A}, φ) is generated by the sequence $\left(x_{n}\right)_{n \geq 0}$. TFAE:
(a) $\left(x_{n}\right)$ is exchangeable
(b) there exists a representation $\rho: \mathbb{S}_{\infty} \rightarrow \operatorname{Aut}(\mathcal{A}, \varphi)$ such that
(i) $x_{n}=\rho\left(\sigma_{n} \sigma_{n-1} \cdots \sigma_{1}\right) x_{0}$ for $n \geq 1$.
(ii) $x_{0} \in \mathcal{A}^{\rho\left(\sigma_{n}\right)}$ for $n \geq 2$ (Localization Property)

NOTATION:
σ_{i} is the Coxeter generator $(i-1, i)$ of \mathbb{S}_{∞}, where \mathbb{S}_{∞} acts on $\{0,1,2,3, \ldots\}$ by permutations.

Remark

Above characterization generalizes easily to sequences of algebras.

A helpful reformulation of exchangeability

Theorem (Gohm \& K

Suppose the tracial probability space (\mathcal{A}, φ) is generated by the sequence $\left(x_{n}\right)_{n \geq 0}$. TFAE:
(a) $\left(x_{n}\right)$ is exchangeable
(b) there exists a representation $\rho: \mathbb{S}_{\infty} \rightarrow \operatorname{Aut}(\mathcal{A}, \varphi)$ such that
(i) $x_{n}=\rho\left(\sigma_{n} \sigma_{n-1} \cdots \sigma_{1}\right) x_{0}$ for $n \geq 1$.
(ii) $x_{0} \in \mathcal{A}^{\rho\left(\sigma_{n}\right)}$ for $n \geq 2$ (Localization Property)

NOTATION:
σ_{i} is the Coxeter generator $(i-1, i)$ of \mathbb{S}_{∞}, where \mathbb{S}_{∞} acts on $\{0,1,2,3, \ldots\}$ by permutations. Let $\mathbb{S}_{n, \infty}=\left\langle\sigma_{n}, \sigma_{n+1}, \ldots\right\rangle$.

Remark

Above characterization generalizes easily to sequences of algebras.

A noncommutative de Finetti theorem

Theorem (Gohm \& K 2009)
Suppose (\mathcal{A}, φ) is equipped with the generating representation $\rho: \mathbb{S}_{\infty} \rightarrow \operatorname{Aut}(\mathcal{A}, \varphi)$.

A noncommutative de Finetti theorem

Theorem (Gohm \& K 2009)
Suppose (\mathcal{A}, φ) is equipped with the generating representation $\rho: \mathbb{S}_{\infty} \rightarrow \operatorname{Aut}(\mathcal{A}, \varphi)$. Let $\mathcal{A}_{n-1}:=\mathcal{A}^{\rho\left(\mathbb{S}_{n+1, \infty}\right)}$, with $n \in \mathbb{N}_{0}$,

A noncommutative de Finetti theorem

Theorem (Gohm \& K 2009)

Suppose (\mathcal{A}, φ) is equipped with the generating representation $\rho: \mathbb{S}_{\infty} \rightarrow \operatorname{Aut}(\mathcal{A}, \varphi)$. Let $\mathcal{A}_{n-1}:=\mathcal{A}^{\rho\left(\mathbb{S}_{n+1, \infty}\right)}$, with $n \in \mathbb{N}_{0}$, and

$$
\alpha(x)=\text { sot- } \lim _{n \rightarrow \infty} \rho\left(\sigma_{1} \quad \sigma_{2} \quad \cdots \sigma_{n} \quad\right)(x), \quad x \in \mathcal{A}
$$

A noncommutative de Finetti theorem

Theorem (Gohm \& K 2009)

Suppose (\mathcal{A}, φ) is equipped with the generating representation $\rho: \mathbb{S}_{\infty} \rightarrow \operatorname{Aut}(\mathcal{A}, \varphi)$. Let $\mathcal{A}_{n-1}:=\mathcal{A}^{\rho\left(\mathbb{S}_{n+1, \infty}\right)}$, with $n \in \mathbb{N}_{0}$, and

$$
\alpha(x)=\text { sot- } \lim _{n \rightarrow \infty} \rho\left(\sigma_{1} \quad \sigma_{2} \quad \cdots \sigma_{n} \quad\right)(x), \quad x \in \mathcal{A} .
$$

Then the subalgebras $\left(\alpha^{n}\left(\mathcal{A}_{0} \quad\right)\right)_{n \geq 0}$ are exchangeable

A noncommutative de Finetti theorem

Theorem (Gohm \& K 2009)

Suppose (\mathcal{A}, φ) is equipped with the generating representation $\rho: \mathbb{S}_{\infty} \rightarrow \operatorname{Aut}(\mathcal{A}, \varphi)$. Let $\mathcal{A}_{n-1}:=\mathcal{A}^{\rho\left(\mathbb{S}_{n+1, \infty}\right)}$, with $n \in \mathbb{N}_{0}$, and

$$
\alpha(x)=\text { sot- } \lim _{n \rightarrow \infty} \rho\left(\sigma_{1} \quad \sigma_{2} \quad \cdots \sigma_{n} \quad\right)(x), \quad x \in \mathcal{A} .
$$

Then the subalgebras $\left(\alpha^{n}\left(\mathcal{A}_{0} \quad\right)\right)_{n \geq 0}$ are exchangeable and, by the n.c. de Finetti theorem (JFA 2010), \mathcal{A}_{-1}-independent.

A noncommutative de Finetti theorem

Theorem (Gohm \& K 2009)

Suppose (\mathcal{A}, φ) is equipped with the generating representation $\rho: \mathbb{S}_{\infty} \rightarrow \operatorname{Aut}(\mathcal{A}, \varphi)$. Let $\mathcal{A}_{n-1}:=\mathcal{A}^{\rho\left(\mathbb{S}_{n+1, \infty}\right)}$, with $n \in \mathbb{N}_{0}$, and

$$
\alpha(x)=\text { SOT- } \lim _{n \rightarrow \infty} \rho\left(\sigma_{1} \quad \sigma_{2} \quad \cdots \sigma_{n} \quad\right)(x), \quad x \in \mathcal{A}
$$

Then the subalgebras $\left(\alpha^{n}\left(\mathcal{A}_{0} \quad\right)\right)_{n \geq 0}$ are exchangeable and, by the n.c. de Finetti theorem (JFA 2010), \mathcal{A}_{-1}-independent. Moreover one obtains a triangular tower of commuting squares:

A noncommutative de Finetti theorem

Theorem (Gohm \& K 2009)

Suppose (\mathcal{A}, φ) is equipped with the generating representation $\rho: \mathbb{S}_{\infty} \rightarrow \operatorname{Aut}(\mathcal{A}, \varphi)$. Let $\mathcal{A}_{n-1}:=\mathcal{A}^{\rho\left(\mathbb{S}_{n+1, \infty}\right)}$, with $n \in \mathbb{N}_{0}$, and

$$
\alpha(x)=\text { SOT- } \lim _{n \rightarrow \infty} \rho\left(\sigma_{1} \quad \sigma_{2} \quad \cdots \sigma_{n} \quad\right)(x), \quad x \in \mathcal{A}
$$

Then the subalgebras $\left(\alpha^{n}\left(\mathcal{A}_{0} \quad\right)\right)_{n \geq 0}$ are exchangeable and, by the n.c. de Finetti theorem (JFA 2010), \mathcal{A}_{-1}-independent. Moreover one obtains a triangular tower of commuting squares:

A noncommutative de Finetti theorem

Theorem (Gohm \& K 2009)

Suppose (\mathcal{A}, φ) is equipped with the generating representation $\rho: \mathbb{S}_{\infty} \rightarrow \operatorname{Aut}(\mathcal{A}, \varphi)$. Let $\mathcal{A}_{n-1}:=\mathcal{A}^{\rho\left(\mathbb{S}_{n+1, \infty}\right)}$, with $n \in \mathbb{N}_{0}$, and

$$
\alpha_{k}(x)=\text { sot- } \lim _{n \rightarrow \infty} \rho\left(\sigma_{1+k} \sigma_{2+k} \cdots \sigma_{n+k}\right)(x), \quad x \in \mathcal{A} .
$$

Then the subalgebras $\left.\left(\alpha^{n}\left(\mathcal{A}_{0}\right)\right)\right)_{n \geq 0}$ are exchangeable and, by the n.c. de Finetti theorem (JFA 2010), \mathcal{A}_{-1}-independent. Moreover one obtains a triangular tower of commuting squares:

A noncommutative de Finetti theorem

Theorem (Gohm \& K 2009)

Suppose (\mathcal{A}, φ) is equipped with the generating representation $\rho: \mathbb{S}_{\infty} \rightarrow \operatorname{Aut}(\mathcal{A}, \varphi)$. Let $\mathcal{A}_{n-1}:=\mathcal{A}^{\rho\left(\mathbb{S}_{n+1, \infty}\right)}$, with $n \in \mathbb{N}_{0}$, and

$$
\alpha_{k}(x)=\text { sot- } \lim _{n \rightarrow \infty} \rho\left(\sigma_{1+k} \sigma_{2+k} \cdots \sigma_{n+k}\right)(x), \quad x \in \mathcal{A} .
$$

Then the subalgebras $\left(\alpha_{k}^{n}\left(\mathcal{A}_{0+k}\right)\right)_{n \geq 0}$ are exchangeable and, by the n.c. de Finetti theorem (JFA 2010), \mathcal{A}_{-1+k}-independent. Moreover one obtains a triangular tower of commuting squares:

A noncommutative de Finetti theorem

Theorem (Gohm \& K 2009)

Suppose (\mathcal{A}, φ) is equipped with the generating representation $\rho: \mathbb{S}_{\infty} \rightarrow \operatorname{Aut}(\mathcal{A}, \varphi)$. Let $\mathcal{A}_{n-1}:=\mathcal{A}^{\rho\left(\mathbb{S}_{n+1, \infty}\right)}$, with $n \in \mathbb{N}_{0}$, and

$$
\alpha_{k}(x)=\text { SOT- } \lim _{n \rightarrow \infty} \rho\left(\sigma_{1+k} \sigma_{2+k} \cdots \sigma_{n+k}\right)(x), \quad x \in \mathcal{A} .
$$

Then the subalgebras $\left(\alpha_{k}^{n}\left(\mathcal{A}_{0+k}\right)\right)_{n \geq 0}$ are exchangeable and, by the n.c. de Finetti theorem (JFA 2010), \mathcal{A}_{-1+k}-independent. Moreover one obtains a triangular tower of commuting squares:

Identification of fixed point algebras for unitary representations of \mathbb{S}_{∞}

Suppose the tracial probability space $(\mathcal{A}, \operatorname{tr})$ is equipped with the (unitary) representation

$$
\pi: \mathbb{S}_{\infty} \rightarrow \mathcal{U}(\mathcal{A}), \quad \text { such that } \mathcal{A}=\mathrm{v} \mathrm{~N}_{\pi}\left(\mathbb{S}_{\infty}\right)
$$

Identification of fixed point algebras for unitary representations of \mathbb{S}_{∞}

Suppose the tracial probability space $(\mathcal{A}, \operatorname{tr})$ is equipped with the (unitary) representation

$$
\pi: \mathbb{S}_{\infty} \rightarrow \mathcal{U}(\mathcal{A}), \quad \text { such that } \mathcal{A}=\mathrm{vN}_{\pi}\left(\mathbb{S}_{\infty}\right)
$$

As before, $\rho:=\operatorname{Ad} \pi$ is generating with fixed point algebras

$$
\mathcal{A}_{n-1}=\mathcal{A}^{\operatorname{Ad} \pi\left(\mathbb{S}_{n+1, \infty}\right)}=\mathcal{A} \cap\left(\mathrm{vN}_{\pi}\left(\sigma_{k} \mid k>n\right)\right)^{\prime}
$$

Identification of fixed point algebras for unitary representations of \mathbb{S}_{∞}

Suppose the tracial probability space $(\mathcal{A}, \operatorname{tr})$ is equipped with the (unitary) representation

$$
\pi: \mathbb{S}_{\infty} \rightarrow \mathcal{U}(\mathcal{A}), \quad \text { such that } \mathcal{A}=\mathrm{vN}_{\pi}\left(\mathbb{S}_{\infty}\right)
$$

As before, $\rho:=\operatorname{Ad} \pi$ is generating with fixed point algebras

$$
\mathcal{A}_{n-1}=\mathcal{A}^{\operatorname{Ad} \pi\left(\mathbb{S}_{n+1, \infty}\right)}=\mathcal{A} \cap\left(\mathrm{vN}_{\pi}\left(\sigma_{k} \mid k>n\right)\right)^{\prime}
$$

Theorem (Gohm \& K '09)

Identification of fixed point algebras for unitary representations of \mathbb{S}_{∞}

Suppose the tracial probability space $(\mathcal{A}, \operatorname{tr})$ is equipped with the (unitary) representation

$$
\pi: \mathbb{S}_{\infty} \rightarrow \mathcal{U}(\mathcal{A}), \quad \text { such that } \mathcal{A}=\mathrm{vN}_{\pi}\left(\mathbb{S}_{\infty}\right)
$$

As before, $\rho:=\operatorname{Ad} \pi$ is generating with fixed point algebras

$$
\mathcal{A}_{n-1}=\mathcal{A}^{\operatorname{Ad} \pi\left(\mathbb{S}_{n+1, \infty}\right)}=\mathcal{A} \cap\left(\mathrm{vN}_{\pi}\left(\sigma_{k} \mid k>n\right)\right)^{\prime}
$$

Theorem (Gohm \& K '09)

$$
\mathcal{A}_{-1}=\mathcal{Z}(\mathcal{A})
$$

Identification of fixed point algebras for unitary representations of \mathbb{S}_{∞}

Suppose the tracial probability space $(\mathcal{A}, \operatorname{tr})$ is equipped with the (unitary) representation

$$
\pi: \mathbb{S}_{\infty} \rightarrow \mathcal{U}(\mathcal{A}), \quad \text { such that } \mathcal{A}=\mathrm{vN}_{\pi}\left(\mathbb{S}_{\infty}\right)
$$

As before, $\rho:=\operatorname{Ad} \pi$ is generating with fixed point algebras

$$
\mathcal{A}_{n-1}=\mathcal{A}^{\operatorname{Ad} \pi\left(\mathbb{S}_{n+1, \infty}\right)}=\mathcal{A} \cap\left(\mathrm{vN}_{\pi}\left(\sigma_{k} \mid k>n\right)\right)^{\prime}
$$

Theorem (Gohm \& K '09)

$$
\mathcal{A}_{-1}=\mathcal{Z}(\mathcal{A}) \quad \mathcal{A}_{n}=\mathcal{A}_{0} \vee v \mathrm{~N}_{\pi}\left(\mathbb{S}_{n+1}\right)
$$

Identification of fixed point algebras for unitary representations of \mathbb{S}_{∞}

Suppose the tracial probability space $(\mathcal{A}, \operatorname{tr})$ is equipped with the (unitary) representation

$$
\pi: \mathbb{S}_{\infty} \rightarrow \mathcal{U}(\mathcal{A}), \quad \text { such that } \mathcal{A}=\mathrm{vN}_{\pi}\left(\mathbb{S}_{\infty}\right)
$$

As before, $\rho:=\operatorname{Ad} \pi$ is generating with fixed point algebras

$$
\mathcal{A}_{n-1}=\mathcal{A}^{\operatorname{Ad} \pi\left(\mathbb{S}_{n+1, \infty}\right)}=\mathcal{A} \cap\left(\mathrm{vN}_{\pi}\left(\sigma_{k} \mid k>n\right)\right)^{\prime}
$$

Theorem (Gohm \& K '09)

$$
\mathcal{A}_{-1}=\mathcal{Z}(\mathcal{A}) \quad \mathcal{A}_{n}=\mathcal{A}_{0} \vee \vee \mathrm{~N}_{\pi}\left(\mathbb{S}_{n+1}\right)
$$

Moreover: $\mathcal{A}_{-1}=\operatorname{vN}\left(C_{k} \mid k \in \mathbb{N}\right)$, where $C_{k}:=E_{-1}\left(A_{0}^{k-1}\right)$,

NOTATION: E_{n} is the tr-preserving conditional expectation from \mathcal{A} onto \mathcal{A}_{n}.

Identification of fixed point algebras for unitary representations of \mathbb{S}_{∞}

Suppose the tracial probability space $(\mathcal{A}, \operatorname{tr})$ is equipped with the (unitary) representation

$$
\pi: \mathbb{S}_{\infty} \rightarrow \mathcal{U}(\mathcal{A}), \quad \text { such that } \mathcal{A}=\mathrm{v} \mathrm{~N}_{\pi}\left(\mathbb{S}_{\infty}\right)
$$

As before, $\rho:=\operatorname{Ad} \pi$ is generating with fixed point algebras

$$
\mathcal{A}_{n-1}=\mathcal{A}^{\operatorname{Ad} \pi\left(\mathbb{S}_{n+1, \infty}\right)}=\mathcal{A} \cap\left(\mathrm{vN}_{\pi}\left(\sigma_{k} \mid k>n\right)\right)^{\prime}
$$

Theorem (Gohm \& K '09)

$$
\mathcal{A}_{-1}=\mathcal{Z}(\mathcal{A}) \quad \mathcal{A}_{n}=\mathcal{A}_{0} \vee v \mathrm{~N}_{\pi}\left(\mathbb{S}_{n+1}\right)
$$

Moreover: $\mathcal{A}_{-1}=\mathrm{vN}\left(C_{k} \mid k \in \mathbb{N}\right)$, where $C_{k}:=E_{-1}\left(A_{0}^{k-1}\right)$,

$$
\mathcal{A}_{0}=\mathrm{vN}\left(A_{0}, C_{k} \mid k \in \mathbb{N}\right), \text { where } A_{0}:=E_{0}(\pi(0,1))
$$

NOTATION: E_{n} is the tr-preserving conditional expectation from \mathcal{A} onto \mathcal{A}_{n}.

Cycles

The transposition $\gamma_{i}:=(0, i)$, for $i \in \mathbb{N}$, is called a star generator and γ_{0} denotes the unity in \mathbb{S}_{n}.

Cycles

The transposition $\gamma_{i}:=(0, i)$, for $i \in \mathbb{N}$, is called a star generator and γ_{0} denotes the unity in \mathbb{S}_{n}.

Lemma (Irving \& Rattan '06, Gohm \& K '09)
Let $k \geq 2$. A k-cycle $\sigma=\left(n_{1}, n_{2}, n_{3}, \ldots, n_{k}\right) \in \mathbb{S}_{\infty}$ is of the form

$$
\sigma=\gamma_{n_{1}} \gamma_{n_{2}} \gamma_{n_{3}} \cdots \gamma_{n_{k-1}} \gamma_{n_{k}} \gamma_{n_{1}}
$$

provided that $n_{1}=0$ if $\sigma(0) \neq 0$.

Cycles

The transposition $\gamma_{i}:=(0, i)$, for $i \in \mathbb{N}$, is called a star generator and γ_{0} denotes the unity in \mathbb{S}_{n}.

Lemma (Irving \& Rattan '06, Gohm \& K '09)
Let $k \geq 2$. A k-cycle $\sigma=\left(n_{1}, n_{2}, n_{3}, \ldots, n_{k}\right) \in \mathbb{S}_{\infty}$ is of the form

$$
\sigma=\gamma_{n_{1}} \gamma_{n_{2}} \gamma_{n_{3}} \cdots \gamma_{n_{k-1}} \gamma_{n_{k}} \gamma_{n_{1}}
$$

provided that $n_{1}=0$ if $\sigma(0) \neq 0$.
Corollary
Disjoint cycles are supported by disjoint sets of star generators.

Cycles \& Independence

Theorem (Gohm \& K)
Let I, J be subsets of \mathbb{N}_{0}. Then $\vee \mathrm{N}_{\pi}\left(\gamma_{i} \mid i \in I\right)$ and $\vee \mathrm{N}_{\pi}\left(\gamma_{j} \mid j \in J\right)$ are \mathcal{A}_{0}-independent whenever $I \cap J=\emptyset$.

Cycles \& Independence

Theorem (Gohm \& K)

Let I, J be subsets of \mathbb{N}_{0}. Then $\vee \mathrm{N}_{\pi}\left(\gamma_{i} \mid i \in I\right)$ and $\mathrm{vN}_{\pi}\left(\gamma_{j} \mid j \in J\right)$ are \mathcal{A}_{0}-independent whenever $I \cap J=\emptyset$.

Corollary

Let σ and τ be disjoint cycles in \mathbb{S}_{∞}. Then $\mathrm{v} \mathrm{N}_{\pi}(\sigma)$ and $\mathrm{v} \mathrm{N}_{\pi}(\tau)$ are \mathcal{A}_{0}-independent.

Cycles \& Independence

Theorem (Gohm \& K)

Let I, J be subsets of \mathbb{N}_{0}. Then $\vee \mathrm{N}_{\pi}\left(\gamma_{i} \mid i \in I\right)$ and $\mathrm{vN}_{\pi}\left(\gamma_{j} \mid j \in J\right)$ are \mathcal{A}_{0}-independent whenever $I \cap J=\emptyset$.

Corollary

Let σ and τ be disjoint cycles in \mathbb{S}_{∞}. Then $\mathrm{v} \mathrm{N}_{\pi}(\sigma)$ and $\mathrm{v} \mathrm{N}_{\pi}(\tau)$ are \mathcal{A}_{0}-independent.

Notation

Let $\pi: \mathbb{S}_{\infty} \rightarrow \mathcal{U}(\mathcal{A})$ be a (unitary) representation as before. Put

$$
v_{i}:=\pi\left(\gamma_{i}\right) .
$$

Let E_{n} denote the tr-preserving conditional expectation from $\mathcal{A}=\mathrm{v} \mathrm{N}_{\pi}\left(\mathbb{S}_{\infty}\right)$ onto the fixed point algebra \mathcal{A}_{n}.

Limit cycles

\ldots. are the crucial tool for identifying all fixed point algebras \mathcal{A}_{n}.

Limit cycles

.... are the crucial tool for identifying all fixed point algebras \mathcal{A}_{n}.
Definition (Gohm \& K '09)
Suppose $v_{n_{1}} v_{n_{2}} \cdots v_{n_{k}} v_{n_{1}} \in \mathcal{A}$ is a k-cycle with $k \geq 1$.

Limit cycles

.... are the crucial tool for identifying all fixed point algebras \mathcal{A}_{n}.
Definition (Gohm \& K '09)
Suppose $v_{n_{1}} v_{n_{2}} \cdots v_{n_{k}} v_{n_{1}} \in \mathcal{A}$ is a k-cycle with $k \geq 1$. Then

$$
E_{n-1}\left(v_{n_{1}} v_{n_{2}} v_{n_{3}} \cdots v_{n_{k}} v_{n_{1}}\right), \quad n \in \mathbb{N}_{0}
$$

is called a limit k-cycle.

Limit cycles

.... are the crucial tool for identifying all fixed point algebras \mathcal{A}_{n}.

Definition (Gohm \& K '09)

Suppose $v_{n_{1}} v_{n_{2}} \cdots v_{n_{k}} v_{n_{1}} \in \mathcal{A}$ is a k-cycle with $k \geq 1$. Then

$$
E_{n-1}\left(v_{n_{1}} v_{n_{2}} v_{n_{3}} \cdots v_{n_{k}} v_{n_{1}}\right), \quad n \in \mathbb{N}_{0}
$$

is called a limit k-cycle. A limit k-cycle is trivial if it is a scalar multiple of the identity.

Limit cycles ...

.... are the crucial tool for identifying all fixed point algebras \mathcal{A}_{n}.

Definition (Gohm \& K '09)

Suppose $v_{n_{1}} v_{n_{2}} \cdots v_{n_{k}} v_{n_{1}} \in \mathcal{A}$ is a k-cycle with $k \geq 1$. Then

$$
E_{n-1}\left(v_{n_{1}} v_{n_{2}} v_{n_{3}} \cdots v_{n_{k}} v_{n_{1}}\right), \quad n \in \mathbb{N}_{0}
$$

is called a limit k-cycle. A limit k-cycle is trivial if it is a scalar multiple of the identity.

Remarks

- Every k-cycle is a limit k-cycle for n sufficiently large.

Limit cycles ...

... are the crucial tool for identifying all fixed point algebras \mathcal{A}_{n}.

Definition (Gohm \& K '09)

Suppose $v_{n_{1}} v_{n_{2}} \cdots v_{n_{k}} v_{n_{1}} \in \mathcal{A}$ is a k-cycle with $k \geq 1$. Then

$$
E_{n-1}\left(v_{n_{1}} v_{n_{2}} v_{n_{3}} \cdots v_{n_{k}} v_{n_{1}}\right), \quad n \in \mathbb{N}_{0}
$$

is called a limit k-cycle. A limit k-cycle is trivial if it is a scalar multiple of the identity.

Remarks

- Every k-cycle is a limit k-cycle for n sufficiently large.
- Limit k-cycles are certain mean ergodic averages of k-cycles. (Compare 'random cycles' in Okounkov's thesis.)

Limit cycles ...

... are the crucial tool for identifying all fixed point algebras \mathcal{A}_{n}.

Definition (Gohm \& K '09)

Suppose $v_{n_{1}} v_{n_{2}} \cdots v_{n_{k}} v_{n_{1}} \in \mathcal{A}$ is a k-cycle with $k \geq 1$. Then

$$
E_{n-1}\left(v_{n_{1}} v_{n_{2}} v_{n_{3}} \cdots v_{n_{k}} v_{n_{1}}\right), \quad n \in \mathbb{N}_{0}
$$

is called a limit k-cycle. A limit k-cycle is trivial if it is a scalar multiple of the identity.

Remarks

- Every k-cycle is a limit k-cycle for n sufficiently large.
- Limit k-cycles are certain mean ergodic averages of k-cycles. (Compare 'random cycles' in Okounkov's thesis.)
- Limit cycles generate a monoid similar to Olshanski semigroups.

Examples of limit cycles

Lemma (One-shifted representation $n=1$)

$$
E_{0}\left(v_{n_{1}} v_{n_{2}} v_{n_{3}} \cdots v_{n_{k}} v_{n_{1}}\right)= \begin{cases}E_{0}\left(v_{1}\right)^{k-1} & \text { if } n_{1}=0 \\ E_{-1}\left(E_{0}\left(v_{1}\right)^{k-1}\right) & \text { if } n_{1} \neq 0\end{cases}
$$

Examples of limit cycles

Lemma (One-shifted representation $n=1$)

$$
E_{0}\left(v_{n_{1}} v_{n_{2}} v_{n_{3}} \cdots v_{n_{k}} v_{n_{1}}\right)= \begin{cases}E_{0}\left(v_{1}\right)^{k-1} & \text { if } n_{1}=0 \\ E_{-1}\left(E_{0}\left(v_{1}\right)^{k-1}\right) & \text { if } n_{1} \neq 0\end{cases}
$$

Proof.
The v_{i} 's are \mathcal{A}_{0}-independent.

Examples of limit cycles

Lemma (One-shifted representation $n=1$)

$$
E_{0}\left(v_{n_{1}} v_{n_{2}} v_{n_{3}} \cdots v_{n_{k}} v_{n_{1}}\right)= \begin{cases}E_{0}\left(v_{1}\right)^{k-1} & \text { if } n_{1}=0 \\ E_{-1}\left(E_{0}\left(v_{1}\right)^{k-1}\right) & \text { if } n_{1} \neq 0\end{cases}
$$

Proof.
The v_{i} 's are \mathcal{A}_{0}-independent. Thus

$$
(\text { L.H.S. })=E_{0}\left(v_{n_{1}} E_{0}\left(v_{1}\right)^{k-1} v_{n_{1}}\right) .
$$

Examples of limit cycles

Lemma (One-shifted representation $n=1$)

$$
E_{0}\left(v_{n_{1}} v_{n_{2}} v_{n_{3}} \cdots v_{n_{k}} v_{n_{1}}\right)= \begin{cases}E_{0}\left(v_{1}\right)^{k-1} & \text { if } n_{1}=0 \\ E_{-1}\left(E_{0}\left(v_{1}\right)^{k-1}\right) & \text { if } n_{1} \neq 0\end{cases}
$$

Proof.
The v_{i} 's are \mathcal{A}_{0}-independent. Thus

$$
(\text { L.H.S. })=E_{0}\left(v_{n_{1}} E_{0}\left(v_{1}\right)^{k-1} v_{n_{1}}\right) .
$$

But this equals (R.H.S.), since $v_{i} x v_{i}=\alpha_{0}^{i}(x)$ for $x \in \mathcal{A}_{0}$ and the $\alpha_{0}^{i}\left(\mathcal{A}_{0}\right)$'s are \mathcal{A}_{-1}-independent.

Examples of limit cycles

Lemma (One-shifted representation $n=1$)

$$
E_{0}\left(v_{n_{1}} v_{n_{2}} v_{n_{3}} \cdots v_{n_{k}} v_{n_{1}}\right)= \begin{cases}E_{0}\left(v_{1}\right)^{k-1} & \text { if } n_{1}=0 \\ E_{-1}\left(E_{0}\left(v_{1}\right)^{k-1}\right) & \text { if } n_{1} \neq 0\end{cases}
$$

Proof.
The v_{i} 's are \mathcal{A}_{0}-independent. Thus

$$
(\text { L.H.S. })=E_{0}\left(v_{n_{1}} E_{0}\left(v_{1}\right)^{k-1} v_{n_{1}}\right) .
$$

But this equals (R.H.S.), since $v_{i} x v_{i}=\alpha_{0}^{i}(x)$ for $x \in \mathcal{A}_{0}$ and the $\alpha_{0}^{i}\left(\mathcal{A}_{0}\right)$'s are \mathcal{A}_{-1}-independent.

Corollary (Zero-shifted representation $n=0$)

$$
E_{-1}\left(v_{n_{1}} v_{n_{2}} v_{n_{3}} \cdots v_{n_{k}} v_{n_{1}}\right)=E_{-1}\left(E_{0}\left(v_{1}\right)^{k-1}\right)
$$

Key observation

Distinguished roles are played by the limit 2-cycle

$$
A_{0}:=E_{0}\left(v_{1}\right)=E_{0}(\pi(0,1))
$$

Key observation

Distinguished roles are played by the limit 2-cycle

$$
A_{0}:=E_{0}\left(v_{1}\right)=E_{0}(\pi(0,1))
$$

and the limit k-cycles

$$
C_{k}:=E_{-1}\left(A_{0}^{k-1}\right)=E_{-1}(\pi(0,1, \ldots, k-1))
$$

Key observation

Distinguished roles are played by the limit 2-cycle

$$
A_{0}:=E_{0}\left(v_{1}\right)=E_{0}(\pi(0,1))
$$

and the limit k-cycles

$$
C_{k}:=E_{-1}\left(A_{0}^{k-1}\right)=E_{-1}(\pi(0,1, \ldots, k-1))
$$

Corollary

Suppose π is non-trivial.

Key observation

Distinguished roles are played by the limit 2-cycle

$$
A_{0}:=E_{0}\left(v_{1}\right)=E_{0}(\pi(0,1))
$$

and the limit k-cycles

$$
C_{k}:=E_{-1}\left(A_{0}^{k-1}\right)=E_{-1}(\pi(0,1, \ldots, k-1))
$$

Corollary

Suppose π is non-trivial.
(i) All C_{k} 's are trivial $\Leftrightarrow \mathrm{v} \mathrm{N}_{\pi}\left(\mathbb{S}_{\infty}\right)$ is a II_{1} factor

Key observation

Distinguished roles are played by the limit 2-cycle

$$
A_{0}:=E_{0}\left(v_{1}\right)=E_{0}(\pi(0,1))
$$

and the limit k-cycles

$$
C_{k}:=E_{-1}\left(A_{0}^{k-1}\right)=E_{-1}(\pi(0,1, \ldots, k-1))
$$

Corollary

Suppose π is non-trivial.
(i) All C_{k} 's are trivial $\Leftrightarrow \mathrm{vN} \mathrm{N}_{\pi}\left(\mathbb{S}_{\infty}\right)$ is a II_{1} factor
\Rightarrow Fixed point algebra \mathcal{A}_{0} is generated by the limit cycle A_{0}.

Key observation

Distinguished roles are played by the limit 2-cycle

$$
A_{0}:=E_{0}\left(v_{1}\right)=E_{0}(\pi(0,1))
$$

and the limit k-cycles

$$
C_{k}:=E_{-1}\left(A_{0}^{k-1}\right)=E_{-1}(\pi(0,1, \ldots, k-1))
$$

Corollary

Suppose π is non-trivial.
(i) All C_{k} 's are trivial $\Leftrightarrow v N_{\pi}\left(\mathbb{S}_{\infty}\right)$ is a I_{1} factor
\Rightarrow Fixed point algebra \mathcal{A}_{0} is generated by the limit cycle A_{0}.
(ii) A_{0} is trivial $\Leftrightarrow\left\{\begin{array}{l}\text { the (subfactor) inclusion } \\ \operatorname{vN}_{\pi}\left(\mathbb{S}_{2, \infty}\right) \subset \mathrm{vN}_{\pi}\left(\mathbb{S}_{\infty}\right) \text { is irreducible. }\end{array}\right.$

A simple application: Thoma multiplicativity

The limit cycles

$$
C_{k}=E_{-1}\left(A_{0}^{k-1}\right)
$$

depend only on k.

A simple application: Thoma multiplicativity

The limit cycles

$$
C_{k}=E_{-1}\left(A_{0}^{k-1}\right)
$$

depend only on k.
Corollary (Thoma Multiplicativity)
Let $m_{k}(\sigma)$ be the number of k-cycles in the cycle decomposition of the permutation $\sigma \in \mathbb{S}_{\infty}$.

A simple application: Thoma multiplicativity

The limit cycles

$$
C_{k}=E_{-1}\left(A_{0}^{k-1}\right)
$$

depend only on k.
Corollary (Thoma Multiplicativity)
Let $m_{k}(\sigma)$ be the number of k-cycles in the cycle decomposition of the permutation $\sigma \in \mathbb{S}_{\infty}$. Then

$$
E_{-1}(\pi(\sigma))=\prod_{k=2}^{\infty} C_{k}^{m_{k}(\sigma)}
$$

A simple application: Thoma multiplicativity

The limit cycles

$$
C_{k}=E_{-1}\left(A_{0}^{k-1}\right)
$$

depend only on k.

Corollary (Thoma Multiplicativity)

Let $m_{k}(\sigma)$ be the number of k-cycles in the cycle decomposition of the permutation $\sigma \in \mathbb{S}_{\infty}$. Then

Remarks

$$
E_{-1}(\pi(\sigma))=\prod_{k=2}^{\infty} C_{k}^{m_{k}(\sigma)}
$$

- E_{-1} is a center-valued trace.

A simple application: Thoma multiplicativity

The limit cycles

$$
C_{k}=E_{-1}\left(A_{0}^{k-1}\right)
$$

depend only on k.

Corollary (Thoma Multiplicativity)

Let $m_{k}(\sigma)$ be the number of k-cycles in the cycle decomposition of the permutation $\sigma \in \mathbb{S}_{\infty}$. Then

Remarks

$$
E_{-1}(\pi(\sigma))=\prod_{k=2}^{\infty} C_{k}^{m_{k}(\sigma)}
$$

- E_{-1} is a center-valued trace.
- If $\mathrm{v} \mathrm{N}_{\pi}\left(\mathbb{S}_{\infty}\right)$ is a factor, then E_{-1} can be replaced by the tracial state tr:

$$
\operatorname{tr}(\pi(\sigma))=\prod_{k \geq 2}\left(\operatorname{tr}\left(A_{0}^{k-1}\right)\right)^{m_{k}(\sigma)}
$$

Commuting squares \& Discrete spectrum

Theorem (Gohm \& K '09)
Let \mathcal{M}_{0} be a von Neumann subalgebra of the finite factor \mathcal{M}. Suppose the unitary $u \in \mathcal{M}$ satisfies:

Commuting squares \& Discrete spectrum

Theorem (Gohm \& K '09)
Let \mathcal{M}_{0} be a von Neumann subalgebra of the finite factor \mathcal{M}. Suppose the unitary $u \in \mathcal{M}$ satisfies:

1. u implements the commuting square | $u \mathcal{M}_{0} u^{*}$ | \subset | \mathcal{M} | |
| :---: | :---: | :---: | :---: |
| $\underset{\mathbb{C}}{ }$ | | \cup | \cup |
| | | | \mathcal{M}_{0} | ,

Commuting squares \& Discrete spectrum

Theorem (Gohm \& K '09)
Let \mathcal{M}_{0} be a von Neumann subalgebra of the finite factor \mathcal{M}. Suppose the unitary $u \in \mathcal{M}$ satisfies:

| | $u \mathcal{M}_{0} u^{*}$ | \subset | \mathcal{M} |
| :--- | :--- | :--- | :--- | :--- |
| 1. u implements the commuting square | \cup | | \cup |
| | \mathbb{C} | \subset | \mathcal{M}_{0} |,

2. the contraction $E_{\mathcal{M}_{0}}(u)$ is a normal.

NOTATION: $E_{\mathcal{M}_{0}}$ is the trace-preserving cond. expectation from \mathcal{M} onto \mathcal{M}_{0}.

Commuting squares \& Discrete spectrum

Theorem (Gohm \& K '09)
Let \mathcal{M}_{0} be a von Neumann subalgebra of the finite factor \mathcal{M}. Suppose the unitary $u \in \mathcal{M}$ satisfies:

| | $u \mathcal{M}_{0} u^{*}$ \subset \mathcal{M}
 1. u implements the commuting square \cup \cup
 \mathbb{C} \subset \mathcal{M}_{0}, |
| :--- | :--- | :--- | :--- | :--- |,

2. the contraction $E_{\mathcal{M}_{0}}(u)$ is a normal.

Then $E_{\mathcal{M}_{0}}(u)$ has discrete spectrum which may accumulate only at the point 0 .

NOTATION: $E_{\mathcal{M}_{0}}$ is the trace-preserving cond. expectation from \mathcal{M} onto \mathcal{M}_{0}.

Commuting squares \& Discrete spectrum

Theorem (Gohm \& K '09)
Let \mathcal{M}_{0} be a von Neumann subalgebra of the finite factor \mathcal{M}. Suppose the unitary $u \in \mathcal{M}$ satisfies:

| | $u \mathcal{M}_{0} u^{*}$ | \subset | \mathcal{M} |
| :--- | :--- | :--- | :--- | :--- |
| 1. u implements the commuting square | \cup | | \cup |
| | \mathbb{C} | \subset | \mathcal{M}_{0} |,

2. the contraction $E_{\mathcal{M}_{0}}(u)$ is a normal.

Then $E_{\mathcal{M}_{0}}(u)$ has discrete spectrum which may accumulate only at the point 0 .

NOTATION: $E_{\mathcal{M}_{0}}$ is the trace-preserving cond. expectation from \mathcal{M} onto \mathcal{M}_{0}.
Corollary (Okounkov '97, Gohm \& K '09)
Suppose $v \mathrm{~N}_{\pi}\left(\mathbb{S}_{\infty}\right)$ is a factor. Then the limit 2-cycle $A_{0}=E_{0}\left(v_{1}\right)$ has discrete spectrum which may only accumulate at the point 0 .

Thoma measures

Definition

A discrete probability measure μ on $[-1,1]$ satisfying

$$
\frac{\mu(t)}{|t|} \in \mathbb{N}_{0} \quad(t \neq 0)
$$

is called a Thoma measure.

Thoma measures

Definition

A discrete probability measure μ on $[-1,1]$ satisfying

$$
\frac{\mu(t)}{|t|} \in \mathbb{N}_{0} \quad(t \neq 0)
$$

is called a Thoma measure.
Theorem (Okounkov '97, Gohm \& K '09)
Suppose $v N_{\pi}\left(\mathbb{S}_{\infty}\right)$ is a factor with tracial state tr. Then the spectral measure μ of the limit 2 -cycle A_{0} with respect to tr is a Thoma measure.

Conclusion: Thoma's theorem

The spectral measure μ is supported on the spectral values of A_{0}.

Conclusion: Thoma's theorem

The spectral measure μ is supported on the spectral values of A_{0}. Denote by $a_{i},-b_{i}$ with $a_{i}>0$ and $b_{i}>0$ the non-zero elements in supp μ.

Conclusion: Thoma's theorem

The spectral measure μ is supported on the spectral values of A_{0}. Denote by $a_{i},-b_{i}$ with $a_{i}>0$ and $b_{i}>0$ the non-zero elements in supp μ. By the previous theorem,

$$
\nu(t):=\mu(t) /|t| \in \mathbb{N}_{0} .
$$

Conclusion: Thoma's theorem

The spectral measure μ is supported on the spectral values of A_{0}. Denote by $a_{i},-b_{i}$ with $a_{i}>0$ and $b_{i}>0$ the non-zero elements in supp μ. By the previous theorem,

$$
\nu(t):=\mu(t) /|t| \in \mathbb{N}_{0}
$$

Thus we have the identity

$$
\operatorname{tr}\left(A_{0}^{k-1}\right)=\sum_{i}\left(a_{i}^{k-1} \mu\left(a_{i}\right)+\left(-b_{i}\right)^{k-1} \mu\left(-b_{i}\right)\right)
$$

Conclusion: Thoma's theorem

The spectral measure μ is supported on the spectral values of A_{0}. Denote by $a_{i},-b_{i}$ with $a_{i}>0$ and $b_{i}>0$ the non-zero elements in supp μ. By the previous theorem,

$$
\nu(t):=\mu(t) /|t| \in \mathbb{N}_{0}
$$

Thus we have the identity

$$
\begin{aligned}
\operatorname{tr}\left(A_{0}^{k-1}\right) & =\sum_{i}\left(a_{i}^{k-1} \mu\left(a_{i}\right)+\left(-b_{i}\right)^{k-1} \mu\left(-b_{i}\right)\right) \\
& =\sum_{i} a_{i}^{k} \nu\left(a_{i}\right)+(-1)^{k-1} \sum_{i} b_{i}^{k} \nu\left(-b_{i}\right)
\end{aligned}
$$

for every $k>1$.

Conclusion: Thoma's theorem

The spectral measure μ is supported on the spectral values of A_{0}. Denote by $a_{i},-b_{i}$ with $a_{i}>0$ and $b_{i}>0$ the non-zero elements in supp μ. By the previous theorem,

$$
\nu(t):=\mu(t) /|t| \in \mathbb{N}_{0} .
$$

Thus we have the identity

$$
\begin{aligned}
\operatorname{tr}\left(A_{0}^{k-1}\right) & =\sum_{i}\left(a_{i}^{k-1} \mu\left(a_{i}\right)+\left(-b_{i}\right)^{k-1} \mu\left(-b_{i}\right)\right) \\
& =\sum_{i} a_{i}^{k} \nu\left(a_{i}\right)+(-1)^{k-1} \sum_{i} b_{i}^{k} \nu\left(-b_{i}\right)
\end{aligned}
$$

for every $k>1$. One recovers from this the traditional form of the Thoma theorem, by writing spectral values with multiplicities.

Noncommutative random measure factorizations

Let B be a complete Boolean algebra. In this talk: $B=2^{\mathbb{N}}$.

Noncommutative random measure factorizations

Let B be a complete Boolean algebra. In this talk: $B=2^{\mathbb{N}}$. Given the (tracial) probability space (\mathcal{A}, φ), let $\mathcal{R}(\mathcal{A}, \varphi)$ denote the complete lattice of von Neumann subalgebras of \mathcal{A}.

Noncommutative random measure factorizations

Let B be a complete Boolean algebra. In this talk: $B=2^{\mathbb{N}}$. Given the (tracial) probability space (\mathcal{A}, φ), let $\mathcal{R}(\mathcal{A}, \varphi)$ denote the complete lattice of von Neumann subalgebras of \mathcal{A}. A map $F: B \rightarrow \mathcal{R}(\mathcal{A}, \varphi)$ is called a factorization of (\mathcal{A}, φ) over \mathcal{N} if the following conditions are satisfied for all $b, b_{1}, b_{2} \in B$:

Noncommutative random measure factorizations

Let B be a complete Boolean algebra. In this talk: $B=2^{\mathbb{N}}$. Given the (tracial) probability space (\mathcal{A}, φ), let $\mathcal{R}(\mathcal{A}, \varphi)$ denote the complete lattice of von Neumann subalgebras of \mathcal{A}. A map $F: B \rightarrow \mathcal{R}(\mathcal{A}, \varphi)$ is called a factorization of (\mathcal{A}, φ) over \mathcal{N} if the following conditions are satisfied for all $b, b_{1}, b_{2} \in B$:

- $F\left(b_{1}\right) \vee F\left(b_{2}\right)=F\left(b_{1} \vee b_{2}\right)$

Noncommutative random measure factorizations

Let B be a complete Boolean algebra. In this talk: $B=2^{\mathbb{N}}$. Given the (tracial) probability space (\mathcal{A}, φ), let $\mathcal{R}(\mathcal{A}, \varphi)$ denote the complete lattice of von Neumann subalgebras of \mathcal{A}. A map $F: B \rightarrow \mathcal{R}(\mathcal{A}, \varphi)$ is called a factorization of (\mathcal{A}, φ) over \mathcal{N} if the following conditions are satisfied for all $b, b_{1}, b_{2} \in B$:

- $F\left(b_{1}\right) \vee F\left(b_{2}\right)=F\left(b_{1} \vee b_{2}\right)$
- $F\left(b_{1}\right) \cap F\left(b_{2}\right)=F\left(b_{1} \wedge b_{2}\right)$

Noncommutative random measure factorizations

Let B be a complete Boolean algebra. In this talk: $B=2^{\mathbb{N}}$. Given the (tracial) probability space (\mathcal{A}, φ), let $\mathcal{R}(\mathcal{A}, \varphi)$ denote the complete lattice of von Neumann subalgebras of \mathcal{A}. A map $F: B \rightarrow \mathcal{R}(\mathcal{A}, \varphi)$ is called a factorization of (\mathcal{A}, φ) over \mathcal{N} if the following conditions are satisfied for all $b, b_{1}, b_{2} \in B$:

- $F\left(b_{1}\right) \vee F\left(b_{2}\right)=F\left(b_{1} \vee b_{2}\right)$
- $F\left(b_{1}\right) \cap F\left(b_{2}\right)=F\left(b_{1} \wedge b_{2}\right)$
- $F\left(0_{B}\right)=\mathcal{N}$

Noncommutative random measure factorizations

Let B be a complete Boolean algebra. In this talk: $B=2^{\mathbb{N}}$. Given the (tracial) probability space (\mathcal{A}, φ), let $\mathcal{R}(\mathcal{A}, \varphi)$ denote the complete lattice of von Neumann subalgebras of \mathcal{A}. A map $F: B \rightarrow \mathcal{R}(\mathcal{A}, \varphi)$ is called a factorization of (\mathcal{A}, φ) over \mathcal{N} if the following conditions are satisfied for all $b, b_{1}, b_{2} \in B$:

- $F\left(b_{1}\right) \vee F\left(b_{2}\right)=F\left(b_{1} \vee b_{2}\right)$
- $F\left(b_{1}\right) \cap F\left(b_{2}\right)=F\left(b_{1} \wedge b_{2}\right)$
- $F\left(0_{B}\right)=\mathcal{N}$
- $F\left(1_{B}\right)=\mathcal{A}$

Noncommutative random measure factorizations

Let B be a complete Boolean algebra. In this talk: $B=2^{\mathbb{N}}$. Given the (tracial) probability space (\mathcal{A}, φ), let $\mathcal{R}(\mathcal{A}, \varphi)$ denote the complete lattice of von Neumann subalgebras of \mathcal{A}. A map $F: B \rightarrow \mathcal{R}(\mathcal{A}, \varphi)$ is called a factorization of (\mathcal{A}, φ) over \mathcal{N} if the following conditions are satisfied for all $b, b_{1}, b_{2} \in B$:

- $F\left(b_{1}\right) \vee F\left(b_{2}\right)=F\left(b_{1} \vee b_{2}\right)$
- $F\left(b_{1}\right) \cap F\left(b_{2}\right)=F\left(b_{1} \wedge b_{2}\right)$
- $F\left(0_{B}\right)=\mathcal{N}$
- $F\left(1_{B}\right)=\mathcal{A}$
- $F(b)$ and $F\left(b^{\prime}\right)$ are \mathcal{N}-independent

Noncommutative random measure factorizations

Let B be a complete Boolean algebra. In this talk: $B=2^{\mathbb{N}}$. Given the (tracial) probability space (\mathcal{A}, φ), let $\mathcal{R}(\mathcal{A}, \varphi)$ denote the complete lattice of von Neumann subalgebras of \mathcal{A}. A map $F: B \rightarrow \mathcal{R}(\mathcal{A}, \varphi)$ is called a factorization of (\mathcal{A}, φ) over \mathcal{N} if the following conditions are satisfied for all $b, b_{1}, b_{2} \in B$:

- $F\left(b_{1}\right) \vee F\left(b_{2}\right)=F\left(b_{1} \vee b_{2}\right)$
- $F\left(b_{1}\right) \cap F\left(b_{2}\right)=F\left(b_{1} \wedge b_{2}\right)$
- $F\left(0_{B}\right)=\mathcal{N}$
- $F\left(1_{B}\right)=\mathcal{A}$
- $F(b)$ and $F\left(b^{\prime}\right)$ are \mathcal{N}-independent

A suitable continuity condition needs to be stipulated for a relevant class of sets $S \subset B$, if B is not finite. Here: S are all finite subsets of \mathbb{N} and the continuity condition is $\bigvee_{s \in S} F(s)=\mathcal{A}$.

Factorizations from unitary representations of \mathbb{S}_{∞}

Theorem (K)

Let (\mathcal{A}, φ) be a tracial probability space equipped with a representation π : $\mathbb{S}_{\infty} \rightarrow \mathcal{U}(\mathcal{A})$ such that $\mathcal{A}=\mathrm{vN}_{\pi}\left(\mathbb{S}_{\infty}\right)$.

Factorizations from unitary representations of \mathbb{S}_{∞}

Theorem (K)

Let (\mathcal{A}, φ) be a tracial probability space equipped with a representation $\pi: \mathbb{S}_{\infty} \rightarrow \mathcal{U}(\mathcal{A})$ such that $\mathcal{A}=v \mathrm{~N}_{\pi}\left(\mathbb{S}_{\infty}\right)$. Put

$$
A_{0}:=\text { SOT- } \lim _{n \rightarrow \infty} \frac{1}{n}(\pi(0,1)+\pi(0,2)+\ldots+\pi(0, n))
$$

Factorizations from unitary representations of \mathbb{S}_{∞}

Theorem (K)

Let (\mathcal{A}, φ) be a tracial probability space equipped with a representation $\pi: \mathbb{S}_{\infty} \rightarrow \mathcal{U}(\mathcal{A})$ such that $\mathcal{A}=v \mathrm{~N}_{\pi}\left(\mathbb{S}_{\infty}\right)$. Put

$$
\begin{aligned}
A_{0} & :=\operatorname{sot-}-\lim _{n \rightarrow \infty} \frac{1}{n}(\pi(0,1)+\pi(0,2)+\ldots+\pi(0, n)) \\
\mathcal{N} & :=\operatorname{vN}\left(A_{0}\right) \vee E_{\mathcal{Z}(\mathcal{A})}\left(v N\left(A_{0}\right)\right)
\end{aligned}
$$

Factorizations from unitary representations of \mathbb{S}_{∞}

Theorem (K)

Let (\mathcal{A}, φ) be a tracial probability space equipped with a representation $\pi: \mathbb{S}_{\infty} \rightarrow \mathcal{U}(\mathcal{A})$ such that $\mathcal{A}=\mathrm{v} \mathrm{N}_{\pi}\left(\mathbb{S}_{\infty}\right)$. Put

$$
\begin{aligned}
A_{0} & :=\text { sot- } \lim _{n \rightarrow \infty} \frac{1}{n}(\pi(0,1)+\pi(0,2)+\ldots+\pi(0, n)) \\
\mathcal{N} & :=\operatorname{vN}\left(A_{0}\right) \vee E_{\mathcal{Z}(\mathcal{A})}\left(v N\left(A_{0}\right)\right) \\
F(I) & :=\mathrm{vN}_{\pi}((0, i) \mid i \in I) \vee \mathcal{N} \quad\left(I \subset \mathbb{N}_{0}\right)
\end{aligned}
$$

Factorizations from unitary representations of \mathbb{S}_{∞}

Theorem (K)

Let (\mathcal{A}, φ) be a tracial probability space equipped with a representation $\pi: \mathbb{S}_{\infty} \rightarrow \mathcal{U}(\mathcal{A})$ such that $\mathcal{A}=\mathrm{vN} \mathbb{N}_{\pi}\left(\mathbb{S}_{\infty}\right)$. Put

$$
\begin{aligned}
A_{0} & :=\text { SOT- } \lim _{n \rightarrow \infty} \frac{1}{n}(\pi(0,1)+\pi(0,2)+\ldots+\pi(0, n)) \\
\mathcal{N} & :=\operatorname{vN}\left(A_{0}\right) \vee E_{\mathcal{Z}(\mathcal{A})}\left(v N\left(A_{0}\right)\right) \\
F(I) & :=\mathrm{vN}_{\pi}((0, i) \mid i \in I) \vee \mathcal{N} \quad\left(I \subset \mathbb{N}_{0}\right)
\end{aligned}
$$

Then

$$
F: 2^{\mathbb{N}} \rightarrow \mathcal{R}(\mathcal{A}, \varphi)
$$

is a factorization of (\mathcal{A}, φ) over \mathcal{N}.

References

C. Köstler. A noncommutative extended de Finetti theorem. J. Funct. Anal. 258, 1073-1120 (2010)
(electronic: arXiv:0806.3621v1)
R. Gohm \& C. Köstler. Noncommutative independence from the braid group \mathbb{B}_{∞}. Commun. Math. Phys. 289, 435-482 (2009) (electronic: arXiv:0806.3691v2)
R. Gohm \& C. Köstler. Noncommutative independence from characters of the symmetric group $\mathbb{S}_{\infty} .47$ pages. Preprint (2010). (electronic: arXiv:1005.5726)

Thank you!

