Stochastic Heat Equation on Algebras of Generalized Functions

Abdessatar BARHOUMI
abdessatar.barhoumi@ipein.rnu.tn

Sousse University, Tunisia

Motivation and main questions

- Extension of the Gross Laplacian:

Motivation and main questions

- Extension of the Gross Laplacian:

- Heat equation: $\frac{\partial U}{\partial t}=\frac{1}{2} \Delta_{G, K} U, \quad U(0)=\Phi \in \mathcal{F}_{\theta}^{*}\left(N^{\prime}\right)$

$$
\rightarrow \quad U_{t}=\mathbb{E}_{\mathbb{P} x}\left(T_{-W(t)} \Phi\right)
$$

Motivation and main questions

- Extension of the Gross Laplacian:

- Heat equation: $\frac{\partial U}{\partial t}=\frac{1}{2} \Delta_{G, K} U, \quad U(0)=\Phi \in \mathcal{F}_{\theta}^{*}\left(N^{\prime}\right)$

$$
\rightarrow \quad U_{t}=\mathbb{E}_{\mathbb{P} x}\left(T_{-W(t)} \Phi\right)
$$

- Poisson equation $\left(\lambda I-\frac{1}{2} \Delta_{G, K}\right) G=\Phi \in \mathcal{F}_{\theta}^{*}\left(N^{\prime}\right)$.

Outline

- Backgrounds

Outline

- Backgrounds
- Generalized Gross Laplacian acting on generalized functions

Outline

- Backgrounds
- Generalized Gross Laplacian acting on generalized functions
- A derivation on $\left(\mathcal{F}_{\theta}^{*}\left(N^{\prime}\right), \star\right)$

Outline

- Backgrounds
- Generalized Gross Laplacian acting on generalized functions
- A derivation on $\left(\mathcal{F}_{\theta}^{*}\left(N^{\prime}\right), \star\right)$
- The Generalized Gross Laplacian

Outline

- Backgrounds
- Generalized Gross Laplacian acting on generalized functions
- A derivation on $\left(\mathcal{F}_{\theta}^{*}\left(N^{\prime}\right), \star\right)$
- The Generalized Gross Laplacian
- The square of white noise CCR

Outline

- Backgrounds
- Generalized Gross Laplacian acting on generalized functions
- A derivation on $\left(\mathcal{F}_{\theta}^{*}\left(N^{\prime}\right), \star\right)$
- The Generalized Gross Laplacian
- The square of white noise CCR
- Generalized Gross heat equation

Outline

- Backgrounds
- Generalized Gross Laplacian acting on generalized functions
- A derivation on $\left(\mathcal{F}_{\theta}^{*}\left(N^{\prime}\right), \star\right)$
- The Generalized Gross Laplacian
- The square of white noise CCR
- Generalized Gross heat equation
- Semigroup approach

Outline

- Backgrounds
- Generalized Gross Laplacian acting on generalized functions
- A derivation on $\left(\mathcal{F}_{\theta}^{*}\left(N^{\prime}\right), \star\right)$
- The Generalized Gross Laplacian
- The square of white noise CCR
- Generalized Gross heat equation
- Semigroup approach
- Probabilistic approach

Outline

- Backgrounds
- Generalized Gross Laplacian acting on generalized functions
- A derivation on $\left(\mathcal{F}_{\theta}^{*}\left(N^{\prime}\right), \star\right)$
- The Generalized Gross Laplacian
- The square of white noise CCR
- Generalized Gross heat equation
- Semigroup approach
- Probabilistic approach
- Generalized Gross white noise potential

Outline

- Backgrounds
- Generalized Gross Laplacian acting on generalized functions
- A derivation on $\left(\mathcal{F}_{\theta}^{*}\left(N^{\prime}\right), \star\right)$
- The Generalized Gross Laplacian
- The square of white noise CCR
- Generalized Gross heat equation
- Semigroup approach
- Probabilistic approach
- Generalized Gross white noise potential
- Generalized Gross λ-potential

Outline

- Backgrounds
- Generalized Gross Laplacian acting on generalized functions
- A derivation on $\left(\mathcal{F}_{\theta}^{*}\left(N^{\prime}\right), \star\right)$
- The Generalized Gross Laplacian
- The square of white noise CCR
- Generalized Gross heat equation
- Semigroup approach
- Probabilistic approach
- Generalized Gross white noise potential
- Generalized Gross λ-potential
- Generalized Gross Poisson equation

Outline

- Backgrounds
- Generalized Gross Laplacian acting on generalized functions
- A derivation on $\left(\mathcal{F}_{\theta}^{*}\left(N^{\prime}\right), \star\right)$
- The Generalized Gross Laplacian
- The square of white noise CCR
- Generalized Gross heat equation
- Semigroup approach
- Probabilistic approach
- Generalized Gross white noise potential
- Generalized Gross λ-potential
- Generalized Gross Poisson equation
- White noise harmonicity

§1. Backgrounds

- Let H be an infinite dimensional real separable Hilbert space with inner product $\langle\cdot, \cdot\rangle$, norm $|\cdot|_{0}$ and an ONB $\left\{e_{n}\right\}_{n=0}^{\infty}$. Let A be an operator on H such that

$$
A e_{n}=\lambda_{n} e_{n}, \quad n=0,1,2, \cdots \quad \text { and } \quad \sum_{n=0}^{\infty} \lambda_{n}^{-2}<\infty .
$$

§1. Backgrounds

- Let H be an infinite dimensional real separable Hilbert space with inner product $\langle\cdot, \cdot\rangle$, norm $|\cdot|_{0}$ and an ONB $\left\{e_{n}\right\}_{n=0}^{\infty}$. Let A be an operator on H such that

$$
A e_{n}=\lambda_{n} e_{n}, \quad n=0,1,2, \cdots \quad \text { and } \quad \sum_{n=0}^{\infty} \lambda_{n}^{-2}<\infty
$$

- For each $p \in \mathbb{R}$ define

$$
|\xi|_{p}^{2}=\sum_{n=0}^{\infty}\left\langle\xi, e_{n}\right\rangle^{2} \lambda_{n}^{2 p}=\left|A^{p \xi}\right|_{0}^{2}, \quad \xi \in H
$$

Then: $\quad X:=\underset{p \rightarrow \infty}{\operatorname{projlim}} X_{p} \subset H \subset \underset{p \rightarrow \infty}{\operatorname{indlim}} X_{-p}=: X^{\prime}$.

§1. Backgrounds

- Let H be an infinite dimensional real separable Hilbert space with inner product $\langle\cdot, \cdot\rangle$, norm $|\cdot|_{0}$ and an ONB $\left\{e_{n}\right\}_{n=0}^{\infty}$. Let A be an operator on H such that

$$
A e_{n}=\lambda_{n} e_{n}, \quad n=0,1,2, \cdots \quad \text { and } \quad \sum_{n=0}^{\infty} \lambda_{n}^{-2}<\infty
$$

- For each $p \in \mathbb{R}$ define

$$
|\xi|_{p}^{2}=\sum_{n=0}^{\infty}\left\langle\xi, e_{n}\right\rangle^{2} \lambda_{n}^{2 p}=\left|A^{p \xi}\right|_{0}^{2}, \quad \xi \in H
$$

Then: $\quad X:=\underset{p \rightarrow \infty}{\operatorname{projlim}} X_{p} \subset H \subset \underset{p \rightarrow \infty}{\operatorname{indlim}} X_{-p}=: X^{\prime}$.

- Let \mathcal{H}, N and $N_{p}, p \in \mathbb{R}$, be the complexifications of H, X, X_{p}.

§1. Backgrounds

- Let θ be a Young function. The conjugate function θ^{*} of θ is

$$
\theta^{*}(x)=\sup _{t \geq 0}(t x-\theta(t)), \quad x \geq 0
$$

§1. Backgrounds

- Let θ be a Young function. The conjugate function θ^{*} of θ is

$$
\theta^{*}(x)=\sup _{t \geq 0}(t x-\theta(t)), \quad x \geq 0
$$

- For each $p \in \mathbb{R}$ and $m>0$, define $\operatorname{Exp}\left(N_{p}, \theta, m\right)$ to be the space of entire functions f on N_{p} satisfying the condition:

$$
\|f\|_{\theta, p, m}=\sup _{x \in N_{p}}|f(x)| e^{-\theta\left(m|x|_{p}\right)}<\infty .
$$

§1. Backgrounds

- Let θ be a Young function. The conjugate function θ^{*} of θ is

$$
\theta^{*}(x)=\sup _{t \geq 0}(t x-\theta(t)), \quad x \geq 0 .
$$

- For each $p \in \mathbb{R}$ and $m>0$, define $\operatorname{Exp}\left(N_{p}, \theta, m\right)$ to be the space of entire functions f on N_{p} satisfying the condition:

$$
\|f\|_{\theta, p, m}=\sup _{x \in N_{p}}|f(x)| e^{-\theta\left(m|x|_{p}\right)}<\infty .
$$

- Then, we obtain the three nuclear spaces

$$
\mathcal{F}_{\theta}\left(N^{\prime}\right)=\bigcap_{p \in \mathbb{N}, m>0} \operatorname{Exp}\left(N_{-p}, \theta, m\right), \quad \mathcal{G}_{\theta}(N)=\bigcup_{p \in \mathbb{N}, m>0} \operatorname{Exp}\left(N_{p}, \theta, m\right),
$$ and the space of generalized functions on $N^{\prime}: \mathcal{F}_{\theta}^{*}\left(N^{\prime}\right)$.

§1. Backgrounds

- For $p \in \mathbb{R}_{+}$and $m>0$, we define the Hilbert spaces

$$
\begin{gathered}
F_{\theta, m}\left(N_{p}\right)=\left\{\vec{\varphi}=\left(\varphi_{n}\right)_{n=0}^{\infty} ; \varphi_{n} \in N_{p}^{\widehat{\otimes} n},\|\varphi\|_{\theta, p, m}<\infty\right\} \\
G_{\theta, m}\left(N_{-p}\right)=\left\{\vec{\Phi}=\left(\Phi_{n}\right)_{n=0}^{\infty} ; \Phi_{n} \in N_{-p}^{\widehat{\otimes} n},\|\vec{\Phi}\|_{\theta,-p, m}<\infty\right\},
\end{gathered}
$$

where $\theta_{n}=\inf _{r>0} e^{\theta(r)} / r^{n}, n \in \mathbb{N}$,

$$
\|\vec{\varphi}\|_{\theta, p, m}^{2}=\sum_{n=0}^{\infty} \theta_{n}^{-2} m^{-n}\left|\varphi_{n}\right|_{p}^{2}, \quad\|\vec{\Phi}\|_{\theta,-p, m}^{2}=\sum_{n=0}^{\infty}\left(n!\theta_{n}\right)^{2} m^{n}\left|\Phi_{n}\right|_{-p}^{2}
$$

§1. Backgrounds

- For $p \in \mathbb{R}_{+}$and $m>0$, we define the Hilbert spaces

$$
F_{\theta, m}\left(N_{p}\right)=\left\{\vec{\varphi}=\left(\varphi_{n}\right)_{n=0}^{\infty} ; \varphi_{n} \in N_{p}^{\widehat{\otimes} n},\|\varphi\|_{\theta, p, m}<\infty\right\}
$$

$$
G_{\theta, m}\left(N_{-p}\right)=\left\{\vec{\Phi}=\left(\Phi_{n}\right)_{n=0}^{\infty} ; \Phi_{n} \in N_{-p}^{\widehat{\otimes} n},\|\vec{\Phi}\|_{\theta,-p, m}<\infty\right\}
$$

where $\theta_{n}=\inf _{r>0} e^{\theta(r)} / r^{n}, n \in \mathbb{N}$,

$$
\|\vec{\varphi}\|_{\theta, p, m}^{2}=\sum_{n=0}^{\infty} \theta_{n}^{-2} m^{-n}\left|\varphi_{n}\right|_{p}^{2}, \quad\|\vec{\Phi}\|_{\theta,-p, m}^{2}=\sum_{n=0}^{\infty}\left(n!\theta_{n}\right)^{2} m^{n}\left|\Phi_{n}\right|_{-p}^{2}
$$

- Put

$$
F_{\theta}(N)=\bigcap_{p \in \mathbb{N}, m>0} F_{\theta, m}\left(N_{p}\right) \quad \text { and } \quad G_{\theta}\left(N^{\prime}\right)=\bigcup_{p \in \mathbb{N}, m>0} G_{\theta, m}\left(N_{-p}\right)
$$

§1. Backgrounds

- Suppose that θ satisfies $\lim _{r \rightarrow+\infty} \theta(r) / r^{2}<+\infty$.

§1. Backgrounds

- Suppose that θ satisfies $\lim _{r \rightarrow+\infty} \theta(r) / r^{2}<+\infty$.

$$
\begin{array}{cccccc}
X & \hookrightarrow & H \equiv L^{2}(\mathbb{R}, d t) & \hookrightarrow & X^{\prime} & \\
& & \downarrow & & & \\
\mathcal{F}_{\theta}\left(N^{\prime}\right) & \hookrightarrow & L^{2}\left(X^{\prime}, \mathcal{B}\left(X^{\prime}\right), \mu\right) & \hookrightarrow & \mathcal{F}_{\theta}^{*}\left(N^{\prime}\right) & \\
\downarrow \downarrow & & \mathcal{T} & \downarrow & & \\
& \downarrow & \mathcal{L} & & \\
F_{\theta}(N) & \hookrightarrow & \Gamma_{s}(\mathcal{H}) & \hookrightarrow & \mathcal{G}_{\theta^{*}}(N) & \hookrightarrow
\end{array} G_{\theta}\left(N^{\prime}\right)
$$

- Gaussian measure on $X^{\prime}: \int_{X^{\prime}} e^{i\langle y, \xi\rangle} d \mu(y)=e^{-|\xi|_{0}^{2} / 2}$.

§1. Backgrounds

- Suppose that θ satisfies $\lim _{r \rightarrow+\infty} \theta(r) / r^{2}<+\infty$.

$$
\begin{array}{cccccc}
X & \hookrightarrow & H \equiv L^{2}(\mathbb{R}, d t) & \hookrightarrow & X^{\prime} & \\
& & \downarrow & & & \\
\mathcal{F}_{\theta}\left(N^{\prime}\right) & \hookrightarrow & L^{2}\left(X^{\prime}, \mathcal{B}\left(X^{\prime}\right), \mu\right) & \hookrightarrow & \mathcal{F}_{\theta}^{*}\left(N^{\prime}\right) & \\
\downarrow \downarrow & & \mathcal{T} & \downarrow & & \\
& \downarrow & \mathcal{L} & & \\
F_{\theta}(N) & \hookrightarrow & \Gamma_{s}(\mathcal{H}) & \hookrightarrow & \mathcal{G}_{\theta^{*}}(N) & \hookrightarrow
\end{array} G_{\theta}\left(N^{\prime}\right)
$$

- Gaussian measure on $X^{\prime}: \int_{X^{\prime}} e^{i\langle y, \xi\rangle} d \mu(y)=e^{-|\xi|_{0}^{2} / 2}$.
- The Taylor map: $\mathcal{T}: \varphi \longmapsto\left(\frac{1}{n!} \varphi^{(n)}(0)\right)_{n=0}^{\infty}$.

§1. Backgrounds

- Suppose that θ satisfies $\lim _{r \rightarrow+\infty} \theta(r) / r^{2}<+\infty$.

$$
\begin{array}{cccccc}
X & \hookrightarrow & H \equiv L^{2}(\mathbb{R}, d t) & \hookrightarrow & X^{\prime} & \\
& & \downarrow & & & \\
\mathcal{F}_{\theta}\left(N^{\prime}\right) & \hookrightarrow & L^{2}\left(X^{\prime}, \mathcal{B}\left(X^{\prime}\right), \mu\right) & \hookrightarrow & \mathcal{F}_{\theta}^{*}\left(N^{\prime}\right) & \\
\downarrow \downarrow & & \mathcal{T} & \downarrow & & \\
& \downarrow & \mathcal{L} & & \\
F_{\theta}(N) & \hookrightarrow & \Gamma_{s}(\mathcal{H}) & \hookrightarrow & \mathcal{G}_{\theta^{*}}(N) & \hookrightarrow
\end{array} G_{\theta}\left(N^{\prime}\right)
$$

- Gaussian measure on $X^{\prime}: \int_{X^{\prime}} e^{i\langle y, \xi\rangle} d \mu(y)=e^{-|\xi|_{0}^{2} / 2}$.
- The Taylor map: $\mathcal{T}: \varphi \longmapsto\left(\frac{1}{n!} \varphi^{(n)}(0)\right)_{n=0}^{\infty}$.
- The Laplace transform : $(\mathcal{L})(\xi) \equiv \widehat{\Phi}(\xi)=\left\langle\left\langle\Phi, e_{\xi}\right\rangle\right\rangle$,

§1. Backgrounds

- Suppose that θ satisfies $\lim _{r \rightarrow+\infty} \theta(r) / r^{2}<+\infty$.

$$
\begin{array}{cccccc}
X & \hookrightarrow & H \equiv L^{2}(\mathbb{R}, d t) & \hookrightarrow & X^{\prime} & \\
& & \downarrow & & & \\
\mathcal{F}_{\theta}\left(N^{\prime}\right) & \hookrightarrow & L^{2}\left(X^{\prime}, \mathcal{B}\left(X^{\prime}\right), \mu\right) & \hookrightarrow & \mathcal{F}_{\theta}^{*}\left(N^{\prime}\right) & \\
\downarrow \mathfrak{T} & & \downarrow & \downarrow & & \downarrow \mathcal{L} \\
F_{\theta}(N) & \hookrightarrow & \Gamma_{s}(\mathcal{H}) & \hookrightarrow & \mathcal{G}_{\theta^{*}}(N) & \hookrightarrow \\
\mathscr{T} & & G_{\theta}\left(N^{\prime}\right)
\end{array}
$$

- Gaussian measure on $X^{\prime}: \int_{X^{\prime}} e^{i\langle y, \xi\rangle} d \mu(y)=e^{-|\xi|_{0}^{2} / 2}$.
- The Taylor map: $\mathcal{T}: \varphi \longmapsto\left(\frac{1}{n!} \varphi^{(n)}(0)\right)_{n=0}^{\infty}$.
- The Laplace transform : $(\mathcal{L})(\xi) \equiv \widehat{\Phi}(\xi)=\left\langle\left\langle\Phi, e_{\xi}\right\rangle\right\rangle$,
- The exponential function : $e_{\xi}(z)=e^{\langle z, \xi\rangle}, z \in N^{\prime}$.

§1. Backgrounds

- Suppose that θ satisfies $\lim _{r \rightarrow+\infty} \theta(r) / r^{2}<+\infty$.

$$
\begin{array}{cccccc}
X & \hookrightarrow & H \equiv L^{2}(\mathbb{R}, d t) & \hookrightarrow & X^{\prime} \\
& & \downarrow & & \\
\mathcal{F}_{\theta}\left(N^{\prime}\right) & \hookrightarrow & L^{2}\left(X^{\prime}, \mathcal{B}\left(X^{\prime}\right), \mu\right) & \hookrightarrow & \mathcal{F}_{\theta}^{*}\left(N^{\prime}\right) & \\
\downarrow \downarrow & & \downarrow & \downarrow & & \downarrow \\
F_{\theta}(N) & \hookrightarrow & \Gamma_{s}(\mathcal{H}) & \hookrightarrow & \mathcal{G} \theta^{*}(N) & \hookrightarrow \\
\mathcal{T} & & G_{\theta}\left(N^{\prime}\right)
\end{array}
$$

- Gaussian measure on $X^{\prime}: \int_{X^{\prime}} e^{i\langle y, \xi\rangle} d \mu(y)=e^{-|\xi|_{0}^{2} / 2}$.
- The Taylor map: $\mathcal{T}: \varphi \longmapsto\left(\frac{1}{n!} \varphi^{(n)}(0)\right)_{n=0}^{\infty}$.
- The Laplace transform : $(\mathcal{L})(\xi) \equiv \widehat{\Phi}(\xi)=\left\langle\left\langle\Phi, e_{\xi}\right\rangle\right\rangle$,
- The exponential function : $e_{\xi}(z)=e^{\langle z, \xi\rangle}, z \in N^{\prime}$.
- The duality: $\langle\langle\Phi, \varphi\rangle\rangle=\langle\langle\vec{\Phi}, \vec{\varphi}\rangle\rangle=\sum_{n=0}^{\infty} n!\left\langle\Phi_{n}, \varphi_{n}\right\rangle$.

§2. Generalized Gross Laplacian

§2. Generalized Gross Laplacian

- For $\eta \in N$ and $\varphi(\xi)=\sum_{n=0}^{\infty}\left\langle\Phi_{n}, \xi^{\otimes n}\right\rangle$ in $\mathcal{G}_{\theta^{*}}(N)$, the holomorphic derivative of φ at $\xi \in N$ in the direction η is defined by

$$
\begin{equation*}
\left(D_{\eta} \varphi\right)(\xi):=\lim _{\lambda \rightarrow 0} \frac{\varphi(\xi+\lambda \eta)-\varphi(\xi)}{\lambda}=\sum_{n=1}^{\infty} n\left\langle\Phi_{n}, \eta \widehat{\otimes} \xi \xi^{\otimes(n-1)}\right\rangle . \tag{2}
\end{equation*}
$$

§2. Generalized Gross Laplacian

- For $\eta \in N$ and $\varphi(\xi)=\sum_{n=0}^{\infty}\left\langle\Phi_{n}, \xi^{\otimes n}\right\rangle$ in $\mathcal{G} \theta^{*}(N)$, the holomorphic derivative of φ at $\xi \in N$ in the direction η is defined by

$$
\begin{equation*}
\left(D_{\eta} \varphi\right)(\xi):=\lim _{\lambda \rightarrow 0} \frac{\varphi(\xi+\lambda \eta)-\varphi(\xi)}{\lambda}=\sum_{n=1}^{\infty} n\left\langle\Phi_{n}, \eta \widehat{\otimes} \xi \xi^{\otimes(n-1)}\right\rangle . \tag{3}
\end{equation*}
$$

\odot The convolution product on $\mathcal{F}_{\theta^{*}}\left(N^{\prime}\right): \Phi \star \Psi:=\mathcal{L}^{-1}(\mathcal{L} \Phi \mathcal{L} \Psi)$.

§2. Generalized Gross Laplacian

\odot For $\eta \in N$ and $\varphi(\xi)=\sum_{n=0}^{\infty}\left\langle\Phi_{n}, \xi^{\otimes n}\right\rangle$ in $\mathcal{G}_{\theta^{*}}(N)$, the holomorphic derivative of φ at $\xi \in N$ in the direction η is defined by

$$
\begin{equation*}
\left(D_{\eta} \varphi\right)(\xi):=\lim _{\lambda \rightarrow 0} \frac{\varphi(\xi+\lambda \eta)-\varphi(\xi)}{\lambda}=\sum_{n=1}^{\infty} n\left\langle\Phi_{n}, \eta \widehat{\otimes} \xi \xi^{\otimes(n-1)}\right\rangle . \tag{4}
\end{equation*}
$$

\odot The convolution product on $\mathcal{F}_{\theta^{*}}\left(N^{\prime}\right): \Phi \star \Psi:=\mathcal{L}^{-1}(\mathcal{L} \Phi \mathcal{L} \Psi)$.
Then $\quad\left(\mathcal{F}_{\theta}\left(N^{\prime}\right), \cdot\right) \longrightarrow\left(\mathcal{F}_{\theta}^{*}\left(N^{\prime}\right), \star\right) \longleftarrow\left(\mathcal{G}_{\theta^{*}}(N), \cdot\right)$.

§2. Generalized Gross Laplacian

\odot For $\eta \in N$ and $\varphi(\xi)=\sum_{n=0}^{\infty}\left\langle\Phi_{n}, \xi^{\otimes n}\right\rangle$ in $\mathcal{G}_{\theta^{*}}(N)$, the holomorphic derivative of φ at $\xi \in N$ in the direction η is defined by

$$
\begin{equation*}
\left(D_{\eta} \varphi\right)(\xi):=\lim _{\lambda \rightarrow 0} \frac{\varphi(\xi+\lambda \eta)-\varphi(\xi)}{\lambda}=\sum_{n=1}^{\infty} n\left\langle\Phi_{n}, \eta \widehat{\otimes} \xi \xi^{\otimes(n-1)}\right\rangle . \tag{5}
\end{equation*}
$$

\odot The convolution product on $\mathcal{F}_{\theta^{*}}\left(N^{\prime}\right): \Phi \star \Psi:=\mathcal{L}^{-1}(\mathcal{L} \Phi \mathcal{L} \Psi)$.

$$
\text { Then } \quad\left(\mathcal{F}_{\theta}\left(N^{\prime}\right), \cdot\right) \longrightarrow\left(\mathcal{F}_{\theta}^{*}\left(N^{\prime}\right), \star\right) \longleftarrow\left(\mathcal{G}_{\theta^{*}}(N), \cdot\right) \text {. }
$$

Definition Let $\Phi \in \mathcal{F}_{\theta}^{*}\left(N^{\prime}\right)$. We define the white noise distributional derivative of Φ in the direction $\eta \in N$ by

$$
\partial_{\eta} \Phi:=\mathcal{L}^{-1}\left(D_{\eta}(L \Phi)\right) .
$$

§2. Generalized Gross Laplacian

Theorem Let $\Phi \sim\left(\Phi_{n}\right)_{n \geq 0}$ in $\mathcal{F}_{\theta}^{*}\left(N^{\prime}\right)$. Then, for any $\eta \in N$, we have

$$
\begin{equation*}
\partial_{\eta} \Phi \sim\left((n+1) \eta \widehat{\otimes}_{1} \Phi_{n+1}\right)_{n \geq 0} . \tag{6}
\end{equation*}
$$

Moreover, there exist $p>0$ and $m>0$ such that for $q^{\prime}>p$ and $m^{\prime \prime}<m$

$$
\left\|\overrightarrow{\partial_{\eta}} \boldsymbol{\Phi}\right\|_{\theta,-p, m} \leq \rho|\eta|_{p}\|\vec{\Phi}\|_{\theta,-q^{\prime}, m^{\prime \prime}}
$$

where the constant ρ is given by

$$
\begin{aligned}
\rho^{2}= & 8\left(m^{\prime} e \theta_{1}^{*}\left\|i_{q, p}\right\|_{H S}\right)^{2} \sum_{n=0}^{\infty}\left(\frac{e}{m^{\prime \prime} m^{\prime 2}}\left\|i_{q^{\prime}, q}\right\|_{H S}\right)^{2 n} \\
& \times \sum_{n=0}^{\infty}\left[8 m\left(m^{\prime} e^{3}\left\|i_{q, p}\right\|_{H S}\right)^{2}\right]^{n} .
\end{aligned}
$$

§2. Generalized Gross Laplacian

Let $\mathcal{L}\left(N, N^{\prime}\right)$ be the set of continuous linear operators from N to N^{\prime}. In view of the kernel theorem, there is an isomorphism

$$
\mathcal{L}\left(N, N^{\prime}\right) \simeq N^{\prime} \otimes N^{\prime} \simeq(N \otimes N)^{\prime} .
$$

If K and $\tau(K) \in(N \otimes N)^{\prime}$ are related under this isomorphism, we have

$$
\langle\tau(K), \xi \otimes \boldsymbol{\eta}\rangle=\langle K \xi, \eta\rangle, \quad \xi, \eta \in N .
$$

Moreover, it is a fact that, for arbitrary orthonormal basis of H such that $\left\{e_{j}\right\}_{j \in \mathbb{N}} \subset X, \tau(K)$ has the representation

$$
\begin{equation*}
\tau(K)=\sum_{j=0}^{\infty}\left(K^{*} e_{j}\right) \otimes e_{j} . \tag{7}
\end{equation*}
$$

§2. Generalized Gross Laplacian

For $\varphi(x)=\sum_{n=0}^{\infty}\left\langle x^{\otimes n}, \varphi_{n}\right\rangle \in \mathcal{F}_{\theta}\left(N^{\prime}\right)$, the $K-$ Gross Laplacian associated to K, (cf. Chung-Ji NMJ Vol. 147, 1997), is defined as
$\Delta_{G}(K) \varphi(x)=\sum_{n=0}^{\infty} D_{K^{*} e_{n}} D_{e_{n}}=\sum_{n=0}^{\infty}(n+2)(n+1)\left\langle x^{\otimes n}, \tau(K) \widehat{\otimes}_{2} \varphi_{n+2}\right\rangle$,
where the contraction $\widehat{\otimes}_{2}$ is defined by

$$
\left\langle x^{\otimes n}, \tau(K) \widehat{\otimes}_{2} \varphi_{n+2}\right\rangle=\left\langle x^{\otimes n} \widehat{\otimes} \tau(K), \varphi_{n+2}\right\rangle
$$

In particular, if $K=I, \tau(I) \equiv \tau$ is the usual trace and $\Delta_{G}(I) \equiv \Delta_{G}$ is the standard Gross Laplacian.

§2. Generalized Gross Laplacian

\odot Our framework, suggests to consider the restriction

$$
K \in L\left(N^{\prime}, N\right) \simeq N \otimes N \subset(N \otimes N)^{\prime} \simeq \mathcal{L}\left(N, N^{\prime}\right) .
$$

Accordingly, we introduce an other Laplacian operator in white noise distribution theory as an operator acting on generalized functions.

§2. Generalized Gross Laplacian

\odot Our framework, suggests to consider the restriction

$$
K \in \mathcal{L}\left(N^{\prime}, N\right) \simeq N \otimes N \subset(N \otimes N)^{\prime} \simeq \mathcal{L}\left(N, N^{\prime}\right)
$$

Accordingly, we introduce an other Laplacian operator in white noise distribution theory as an operator acting on generalized functions.
Definition We define the Generalized Gross Laplacian acting on generalized functions by

$$
\begin{equation*}
\Delta_{G, K}:=\sum_{n=0}^{\infty} \partial_{K^{*} e_{n}} \partial_{e_{n}} \tag{10}
\end{equation*}
$$

§2. Generalized Gross Laplacian

\odot Our framework, suggests to consider the restriction

$$
K \in \mathcal{L}\left(N^{\prime}, N\right) \simeq N \otimes N \subset(N \otimes N)^{\prime} \simeq \mathcal{L}\left(N, N^{\prime}\right)
$$

Accordingly, we introduce an other Laplacian operator in white noise distribution theory as an operator acting on generalized functions.
Definition We define the Generalized Gross Laplacian acting on generalized functions by

$$
\begin{equation*}
\Delta_{G, K}:=\sum_{n=0}^{\infty} \partial_{K^{*} e_{n}} \partial_{e_{n}} \tag{11}
\end{equation*}
$$

\odot Recall that, for $\eta \in N, D_{\eta}$ is a restriction of ∂_{η} to the space $\mathcal{F}_{\theta}\left(N^{\prime}\right)$. Thus, from (8) and (9) we expect that the K-Gross Laplacian $\Delta_{G}(K)$ is actually a restriction of the Generalized Gross Laplacian $\Delta_{G, K}$ to the space $\mathcal{F}_{\theta}\left(N^{\prime}\right)$.

§2. Generalized Gross Laplacian

Theorem For $\Phi \sim\left(\Phi_{n}\right)_{n=0}^{\infty}$ in $\mathcal{F}_{\theta}^{*}\left(N^{\prime}\right), \Delta_{G, K} \Phi$ is represented by

$$
\begin{equation*}
\Delta_{G, K} \Phi \sim\left\{(n+2)(n+1) \tau(K) \widehat{\otimes}_{2} \Phi_{n+2}\right\}_{n \geq 0} . \tag{12}
\end{equation*}
$$

Moreover, $\Delta_{G, K}$ is a continuous linear operator from $\mathcal{F}_{\theta}^{*}\left(N^{\prime}\right)$ into itself. In fact, there exists $q^{\prime}>0$ and $m^{\prime \prime}>0$ such that for any $m^{\prime \prime}>m>0$ and $p>q^{\prime}$, we have

$$
\left\|\overrightarrow{\Delta_{G, K} \Phi}\right\|_{\theta,-p, m} \leq \rho|\tau(K)|_{p}\|\vec{\Phi}\|_{\theta,-q^{\prime}, m^{\prime \prime}}
$$

where

$$
\rho^{2}=8\left(\theta_{2}^{*}\right)^{2}\left(2 m^{\prime} e\left\|i_{q, p}\right\|_{H S}\right)^{4} \sum_{n=0}^{\infty}\left(4 \sqrt{m} m^{\prime} e^{2}\left\|i_{q, p}\right\|_{H S}\right)^{2 n} \sum_{n=0}^{\infty}\left(\frac{e}{m^{\prime \prime} m^{\prime 2}}\left\|i_{q^{\prime}, q}\right\|_{H S}\right)
$$

§2. Generalized Gross Laplacian

Proposition Let $\Phi, \Psi \in \mathcal{F}_{\theta}^{*}\left(N^{\prime}\right)$, then the following equality holds $\Delta_{G, K}(\Phi \star \Psi)$

$$
=\Delta_{G, K}(\Phi) \star \Psi+\Phi \star \Delta_{G, K}(\Psi)+2 \sum_{j=0}^{\infty} \partial_{K^{*} e_{j}}(\Phi) \star \partial_{e_{j}}(\Psi) .
$$

§2. Generalized Gross Laplacian

Proposition Let $\Phi, \Psi \in \mathcal{F}_{\theta}^{*}\left(N^{\prime}\right)$, then the following equality holds $\Delta_{G, K}(\Phi \star \Psi)$

$$
=\Delta_{G, K}(\Phi) \star \Psi+\Phi \star \Delta_{G, K}(\Psi)+2 \sum_{j=0}^{\infty} \partial_{K^{*} e_{j}}(\Phi) \star \partial_{e_{j}}(\Psi) .
$$

\odot Let $\Phi \sim\left(\Phi_{n}\right)_{n \geq 0}$ in $\mathcal{F}_{\theta}^{*}\left(N^{\prime}\right)$. For $K \in L\left(N^{\prime}, N\right)$ we define a generalized number operator $N(K) \in \mathcal{L}\left(\mathcal{F}_{\theta}^{*}\left(N^{\prime}\right), \mathscr{F}_{\theta}^{*}\left(N^{\prime}\right)\right)$ by

$$
\begin{equation*}
N(K) \Phi \sim\left\{\gamma_{n}(K) \Phi_{n}\right\}_{n \geq 0}, \tag{14}
\end{equation*}
$$

where $\gamma_{n}(K)$ is given by $\gamma_{0}(K)=0$ and

$$
\gamma_{n}(K)=\sum_{j=0}^{n-1} I^{\otimes j} \otimes K \otimes I^{\otimes(n-1-j)}, \quad n \geq 1 .
$$

§2. Generalized Gross Laplacian

Theorem SWN-CCR

Let $K_{1}, K_{2} \in L\left(N^{\prime}, N\right)$. Then, the following commutation relations hold

1. $\left[N\left(K_{1}\right), N\left(K_{2}\right)\right]=N\left(\left[K_{1}, K_{2}\right]\right)$
2. $\left[\Delta_{G, K_{1}}, \Delta_{G, K_{2}}\right]=0$
3. $\left[\Delta_{G}^{*}\left(K_{1}\right), \Delta_{G}^{*}\left(K_{2}\right)\right]=0$
4. $\left[N\left(K_{1}\right), \Delta_{G, K_{2}}\right]=-2 \Delta_{G, K_{1}^{*} K_{2}}$
5. $\left[N\left(K_{1}\right), \Delta_{G}^{*}\left(K_{2}\right)\right]=2 \Delta_{G}^{*}\left(K_{1} K_{2}\right)$
6. $\left[\Delta_{G, K_{1}}, \Delta_{G}^{*}\left(K_{2}\right)\right]=4 N\left(K_{2}^{*} K_{1}\right)+2\left\langle\tau\left(K_{2}\right), \tau\left(K_{1}\right)\right\rangle I$.
\rightarrow We obtain an ∞-dimensional realization of the SWN Lie algebra

$$
\operatorname{Lie}\left\langle\Delta_{G, K_{1}}, \Delta_{G}^{*}\left(K_{2}\right), N\left(K_{3}\right), I ; \quad K_{1}, K_{2}, K_{3} \in L\left(N^{\prime}, N\right)\right\rangle .
$$

§3. Generalized Gross heat equation

We shall construct a group $\left\{P_{t K} ; t \in \mathbb{R}\right\}$ with infinitesimal generator $\frac{1}{2} \Delta_{G, K}$. Observe that symbolically $\mathscr{P}_{t K}$ is given by

$$
\mathcal{P}_{t K}=e^{\frac{t}{2} \Delta_{G, K}} .
$$

Thus, a formal computation suggests to define the heat operator $\mathscr{P}_{t K}$, acting on generalized function, by

$$
\mathscr{P}_{t K} \Phi \sim\left(\sum_{l=0}^{\infty} \frac{(n+2 l)!t^{l}}{n!l!2^{l}} \tau(K)^{\otimes l} \widehat{\otimes}_{2 l} \Phi_{n+2 l}\right)_{n \geq 0}, \quad \Phi \in \mathcal{F}_{\theta}^{*}\left(N^{\prime}\right) .
$$

§3. Generalized Gross heat equation

§3. Generalized Gross heat equation

Theorem The family $\left\{P_{t K} ; t \in \mathbb{R}\right\}$ is a strongly continuous group of continuous linear operators from $\mathcal{F}_{\theta}^{*}\left(N^{\prime}\right)$ into itself with infinitesimal generator $\frac{1}{2} \Delta_{G, K}$.

§3. Generalized Gross heat equation

Theorem The family $\left\{\varphi_{t K} ; t \in \mathbb{R}\right\}$ is a strongly continuous group of continuous linear operators from $\mathcal{F}_{\theta}^{*}\left(N^{\prime}\right)$ into itself with infinitesimal generator $\frac{1}{2} \Delta_{G, K}$.
For $\Phi \in \mathcal{F}_{\theta}^{*}\left(N^{\prime}\right)$, the generalized Gross heat equation

$$
\begin{equation*}
\frac{\partial U}{\partial t}=\frac{1}{2} \Delta_{G, K} U, \quad U(0)=\Phi \tag{17}
\end{equation*}
$$

has a unique solution in $\mathcal{F}_{\theta}^{*}\left(N^{\prime}\right)$ given by

$$
U_{t}=\mathscr{P}_{t K} \Phi
$$

§3. Generalized Gross heat equation

\odot We proceed in order to give a probabilistic representation of the solution of the heat equation (15). First, for $p>0$, we keep the notation K for its restriction to X_{p} into X_{p}. Moreover, we assume that K is a symmetric, non-negative linear operator with finite trace. Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0, T]}, \mathbb{P}\right)$ be a filtered probability space with a filtration $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$.

§3. Generalized Gross heat equation

\odot We proceed in order to give a probabilistic representation of the solution of the heat equation (15). First, for $p>0$, we keep the notation K for its restriction to X_{p} into X_{p}. Moreover, we assume that K is a symmetric, non-negative linear operator with finite trace. Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0, T]}, \mathbb{P}\right)$ be a filtered probability space with a filtration $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$.
\odot By a K-Wiener process $W=(W(t))_{t \in[0, T]}$ we mean an X_{q}-valued process on $(\Omega, \mathcal{F}, \mathbb{P})$ such that

- $W(0)=0$,
- W has \mathbb{P} - a.s. continuous trajectories,
- the increments of W are independent,
- the increments $W(t)-W(s), 0<s \leq t$ have the

Gaussian law: $\mathbb{P}_{\circ}(W(t)-W(s))^{-1}=\mathcal{N}(0,(t-s) K)$.

§3. Generalized Gross heat equation

\odot A K-Wiener process with respect to the filtration $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ is a K-Wiener process such that

- $W(t)$ is \mathcal{F}_{t}-adapted,
- $W(t)-W(s)$ is independent of \mathcal{F}_{s} for all $0 \leq s<t$.

§3. Generalized Gross heat equation

\odot A K-Wiener process with respect to the filtration $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ is a K-Wiener process such that

- $W(t)$ is \mathcal{F}_{t}-adapted,
- $W(t)-W(s)$ is independent of \mathcal{F}_{s} for all $0 \leq s<t$.
\odot Later on we need define stochastic integrals of $\mathcal{F}_{\theta}^{*}\left(N^{\prime}\right)$-valued process. We use the theory of stochastic integration in Hilbert space developed in Da Prato-Zabczyk 1992 and Kallianpur-Xiong 1995.

§3. Generalized Gross heat equation

Definition Let $(\Phi(t))_{0 \leq t \leq T}$ be a given $\mathcal{L}\left(X_{q}, \mathcal{F}_{\theta}^{*}\left(N^{\prime}\right)\right)$-valued, \mathcal{F}_{t}-adapted continuous stochastic process. Assume that there exist $m>0$ and $q \in \mathbb{N}$ such that $\mathcal{T} \circ \mathcal{L}(t) \in \mathcal{L}\left(X_{q}, G_{\theta, m}\left(N_{-q}\right)\right)$ and

$$
\begin{equation*}
\mathbb{P}\left(\int_{0}^{T}\left\|(\mathcal{T} \circ \mathcal{L} \Phi(t)) \circ K^{1 / 2}\right\|_{H S}^{2} d t<\infty\right)=1 . \tag{18}
\end{equation*}
$$

Then for $t \in[0, T]$ we define the generalized stochastic integral

$$
\int_{0}^{t} \Phi(s) d W(s) \in \mathcal{F}_{\theta}^{*}\left(N^{\prime}\right)
$$

by $\mathcal{T}\left(L\left(\int_{0}^{t} \Phi(s) d W(s)\right)(\xi)\right):=\int_{0}^{t} \mathcal{T}((\leftharpoonup \Phi(s))(\xi)) d W(s)$.

§3. Generalized Gross heat equation

\odot For $\eta \in N$, the translation operator $t_{-\eta}$ on $\mathcal{G}_{\theta^{*}}(N)$ is defined by

$$
\left(t_{-\eta} \varphi\right)(\xi)=\varphi(\xi+\eta), \quad \xi \in N
$$

§3. Generalized Gross heat equation

\odot For $\eta \in N$, the translation operator $t_{-\eta}$ on $\mathcal{G} \theta^{*}(N)$ is defined by

$$
\left(t_{-\eta} \varphi\right)(\xi)=\varphi(\xi+\eta), \quad \xi \in N
$$

\odot Then, the translation operator $T_{-\eta}$ is defined on $\mathcal{F}_{\theta}^{*}\left(N^{\prime}\right)$ by

$$
T_{-\eta} \Phi:=\left(\mathcal{L}^{-1} t_{-\eta} \mathcal{L}\right) \Phi
$$

§3. Generalized Gross heat equation

\odot For $\eta \in N$, the translation operator $t_{-\eta}$ on $\mathcal{G}_{\theta^{*}}(N)$ is defined by

$$
\left(t_{-\eta} \varphi\right)(\xi)=\varphi(\xi+\eta), \quad \xi \in N
$$

\odot Then, the translation operator $T_{-\eta}$ is defined on $\mathcal{F}_{\theta}^{*}\left(N^{\prime}\right)$ by

$$
T_{-\eta} \Phi:=\left(\mathcal{L}^{-1} t_{-\eta} \mathcal{L}\right) \Phi
$$

Theorem $T_{-W(t)} \Phi$ is an $\mathcal{F}_{\theta}^{*}\left(N^{\prime}\right)$-valued continuous \mathcal{F}_{t}-semimartingale which has the following decomposition

$$
\begin{aligned}
T_{-W(t)} \Phi & =T_{-W(0)} \Phi+\sum_{j=0}^{\infty} \int_{0}^{t} \partial_{e_{j}}\left(T_{-W(s)} \Phi\right) d W(s) \\
& +\frac{1}{2} \int_{0}^{t} \Delta_{G, K}\left(T_{-W(s)} \Phi\right) d s .
\end{aligned}
$$

§3. Generalized Gross heat equation

Theorem The solution of the Cauchy problem

$$
\frac{\partial U}{\partial t}=\frac{1}{2} \Delta_{G, K} U, \quad U(0)=\Phi
$$

is given by

$$
\begin{equation*}
U_{t}=\mathbb{E}_{\mathbb{P}^{x}}\left(T_{-W(t)} \Phi\right), \tag{20}
\end{equation*}
$$

where $(W(t))_{t \in[0, T]}$ is a K -Wiener process with probability law \mathbb{P}^{x} when starting at $W(0)=x \in X_{p} . \mathbb{E}_{\mathbb{P} x}$ denotes the expectation with respect to \mathbb{P}^{x}.

§4. Generalized Gross white noise potential

§4. Generalized Gross white noise potential

\odot For any $\lambda>0$, we define a functional $G_{K} \Phi: \mathcal{F}_{\theta}\left(N^{\prime}\right) \longrightarrow \mathbb{C}$ by

$$
\begin{equation*}
\left\langle\left\langle G_{K} \Phi, \varphi\right\rangle\right\rangle:=\int_{0}^{\infty} e^{-\lambda t}\left\langle\left\langle\mathbb{E}_{\mathbb{P}^{x}}\left(T_{-W(t)} \Phi\right), \varphi\right\rangle\right\rangle d t \tag{22}
\end{equation*}
$$

§4. Generalized Gross white noise potential

\odot For any $\lambda>0$, we define a functional $G_{K} \Phi: \mathcal{F}_{\theta}\left(N^{\prime}\right) \longrightarrow \mathbb{C}$ by

$$
\begin{equation*}
\left\langle\left\langle G_{K} \Phi, \varphi\right\rangle\right\rangle:=\int_{0}^{\infty} e^{-\lambda t}\left\langle\left\langle\mathbb{E}_{\mathbb{P}^{x}}\left(T_{-W(t)} \Phi\right), \varphi\right\rangle\right\rangle d t . \tag{23}
\end{equation*}
$$

\odot Fact $: G_{K} \Phi \in \mathcal{F}_{\theta}{ }^{*}\left(N^{\prime}\right)$.

§4. Generalized Gross white noise potential

\odot For any $\lambda>0$, we define a functional $G_{K} \Phi: \mathcal{F}_{\theta}\left(N^{\prime}\right) \longrightarrow \mathbb{C}$ by

$$
\begin{equation*}
\left\langle\left\langle G_{K} \Phi, \varphi\right\rangle\right\rangle:=\int_{0}^{\infty} e^{-\lambda t}\left\langle\left\langle\mathbb{E}_{\mathbb{P}^{x}}\left(T_{-W(t)} \Phi\right), \varphi\right\rangle\right\rangle d t \tag{24}
\end{equation*}
$$

\odot Fact : $G_{K} \Phi \in \mathcal{F}_{\theta}^{*}\left(N^{\prime}\right)$.
Theorem Let $K \in \mathcal{L}\left(N^{\prime}, N\right)$ and $\Phi \in \mathcal{F}_{\theta}^{*}\left(N^{\prime}\right)$. Then,

$$
G=G_{K} \Phi=\int_{0}^{\infty} e^{-\lambda t} \mathbb{E}_{\mathbb{P}^{x}}\left(T_{-W(t)} \Phi\right) d t
$$

is a solution of the Poisson equation

$$
\left(\lambda I-\frac{1}{2} \Delta_{G, K}\right) G=\Phi
$$

§4. Generalized Gross white noise potential

Outline of proof.

§4. Generalized Gross white noise potential

Outline of proof.

\odot By using the Itô's formula, we compute

$$
\begin{align*}
e^{-\lambda t} T_{-W(t)} \Phi= & T_{-W(0)} \Phi+\sum_{j=0}^{\infty} \int_{0}^{t} e^{-\lambda s} \partial_{e_{j}}\left(T_{-W(s)} \Phi\right) d W(s) \\
& +\frac{1}{2} \int_{0}^{t} e^{-\lambda s} \Delta_{G, K}\left(T_{-W(s)} \Phi\right) d s \\
& -\lambda \int_{0}^{t} e^{-\lambda s} T_{-W(s)} \Phi d s . \tag{27}
\end{align*}
$$

$\S 4$. Generalized Gross white noise potential

Outline of proof.

\odot By using the Itô's formula, we compute

$$
\begin{align*}
e^{-\lambda t} T_{-W(t)} \Phi= & T_{-W(0)} \Phi+\sum_{j=0}^{\infty} \int_{0}^{t} e^{-\lambda s} \partial_{e_{j}}\left(T_{-W(s)} \Phi\right) d W(s) \\
& +\frac{1}{2} \int_{0}^{t} e^{-\lambda s} \Delta_{G, K}\left(T_{-W(s)} \Phi\right) d s \\
& -\lambda \int_{0}^{t} e^{-\lambda s} T_{-W(s)} \Phi d s . \tag{29}
\end{align*}
$$

\odot Hence, by taking expectations on both sides and the martingale property, we get

$$
\begin{equation*}
e^{-\lambda t} \mathbb{E}_{\mathbb{P}^{x}}\left(T_{-W(t)} \Phi\right)=\Phi+\mathbb{E}_{\mathbb{P}^{x}} \int_{0}^{t} e^{-\lambda s}\left(\frac{1}{2} \Delta_{G, K}-\lambda I\right)\left(T_{-W(s)} \Phi\right) d s \tag{30}
\end{equation*}
$$

§4. Generalized Gross white noise potential

\odot After the derivation of (26) with respect to t, we use the probabilistic representation of the solution of the Generalized Gross heat equation and (20), then we get the identification

$$
\Delta_{G, K} \mathbb{E}_{\mathbb{P}^{x}}\left(T_{-W(t)} \Phi\right)=\mathbb{E}_{\mathbb{P}^{x}} \Delta_{G, K}\left(T_{-W(t)} \Phi\right)
$$

§4. Generalized Gross white noise potential

\odot After the derivation of (26) with respect to t, we use the probabilistic representation of the solution of the Generalized Gross heat equation and (20), then we get the identification

$$
\Delta_{G, K} \mathbb{E}_{\mathbb{P}^{x}}\left(T_{-W(t)} \Phi\right)=\mathbb{E}_{\mathbb{P}^{x}} \Delta_{G, K}\left(T_{-W(t)} \Phi\right)
$$

\odot Therefore, we obtain

$$
e^{-\lambda t} \mathbb{E}_{\mathbb{P}^{x}}\left(T_{-W(t)} \Phi\right)=\Phi+\left(\frac{1}{2} \Delta_{G, K}-\lambda I\right) \int_{0}^{t} e^{-\lambda s} \mathbb{E}_{\mathbb{P}^{x}}\left(T_{-W(s)} \Phi\right) d s
$$

§4. Generalized Gross white noise potential

\odot After the derivation of (26) with respect to t, we use the probabilistic representation of the solution of the Generalized Gross heat equation and (20), then we get the identification

$$
\Delta_{G, K} \mathbb{E}_{\mathbb{P}^{x}}\left(T_{-W(t)} \Phi\right)=\mathbb{E}_{\mathbb{P}^{x}} \Delta_{G, K}\left(T_{-W(t)} \Phi\right)
$$

\odot Therefore, we obtain

$$
e^{-\lambda t} \mathbb{E}_{\mathbb{P}^{x}}\left(T_{-W(t)} \Phi\right)=\Phi+\left(\frac{1}{2} \Delta_{G, K}-\lambda I\right) \int_{0}^{t} e^{-\lambda s} \mathbb{E}_{\mathbb{P}^{x}}\left(T_{-W(s)} \Phi\right) d s
$$

\odot Finally, letting t tend to infinity, we get

$$
0=\Phi+\left(\frac{1}{2} \Delta_{G, K}-\lambda I\right) G_{K} \Phi
$$

References

- L. Accardi, U. Franz and M. Skeide, Renormalized squares of white noise and other non-Gaussian noises as Lévy processes on real Lie algebras, Comm. Math. Phys. 228 (2002), 123-150.

References

- L. Accardi, U. Franz and M. Skeide, Renormalized squares of white noise and other non-Gaussian noises as Lévy processes on real Lie algebras, Comm. Math. Phys. 228 (2002), 123-150.
- D. M. Chung and U.C. Ji, Transform on white noise functionals with their application to Cauchy problems, Nagoya Math. J. Vol 147 (1997), 1-23.

References

- L. Accardi, U. Franz and M. Skeide, Renormalized squares of white noise and other non-Gaussian noises as Lévy processes on real Lie algebras, Comm. Math. Phys. 228 (2002), 123-150.
- D. M. Chung and U.C. Ji, Transform on white noise functionals with their application to Cauchy problems, Nagoya Math. J. Vol 147 (1997), 1-23.
- G. Da Prato and J. Zabczyk, Stochastic Equation in Infinite Dimensions, Cambridge University Press, London,1992.

References

- L. Accardi, U. Franz and M. Skeide, Renormalized squares of white noise and other non-Gaussian noises as Lévy processes on real Lie algebras, Comm. Math. Phys. 228 (2002), 123-150.
- D. M. Chung and U.C. Ji, Transform on white noise functionals with their application to Cauchy problems, Nagoya Math. J. Vol 147 (1997), 1-23.
- G. Da Prato and J. Zabczyk, Stochastic Equation in Infinite Dimensions, Cambridge University Press, London,1992.
- I. Dôku, H.-H Kuo, and Y.-J. Lee, Fourier transform and heat equation in white noise analysis, Stochastic analysis on infinite dimensional spaces (1994) 60-74.

References

- L. Accardi, U. Franz and M. Skeide, Renormalized squares of white noise and other non-Gaussian noises as Lévy processes on real Lie algebras, Comm. Math. Phys. 228 (2002), 123-150.
- D. M. Chung and U.C. Ji, Transform on white noise functionals with their application to Cauchy problems, Nagoya Math. J. Vol 147 (1997), 1-23.
- G. Da Prato and J. Zabczyk, Stochastic Equation in Infinite Dimensions, Cambridge University Press, London,1992.
- I. Dôku, H.-H Kuo, and Y.-J. Lee, Fourier transform and heat equation in white noise analysis, Stochastic analysis on infinite dimensional spaces (1994) 60-74.
- M. Erraoui, H Ouerdiane, and J. L. Silva, Convolution equation: Solution and probabilistic representation, Quantum Probability and White Noise Analysis. 25(2010) 230-244.

References

- R. Gannoun, R. Hachachi, H. Ouerdiane and A. Rezgui, Un théorème de dualité entre espaces de fonctions holomorphes à croissance exponentielle, J. Funct. Anal., Vol. 171 No. 1(2000) 1-14

References

- R. Gannoun, R. Hachachi, H. Ouerdiane and A. Rezgui, Un théorème de dualité entre espaces de fonctions holomorphes à croissance exponentielle, J. Funct. Anal., Vol. 171 No. 1(2000) 1-14
- L. Gross, Potential theory on Hilbert space, J.Functional Analysis 1 (1967), 123-181.

References

- R. Gannoun, R. Hachachi, H. Ouerdiane and A. Rezgui, Un théorème de dualité entre espaces de fonctions holomorphes à croissance exponentielle, J. Funct. Anal., Vol. 171 No. 1(2000) 1-14
- L. Gross, Potential theory on Hilbert space, J.Functional Analysis 1 (1967), 123-181.
- G. Kallianpur and J. Xiong, Stochastic Differential Equations in Infinite Dimensional Spaces, Lecture Notes Monograph series, Inst. Math. Statis., 26 (1995).

References

- R. Gannoun, R. Hachachi, H. Ouerdiane and A. Rezgui, Un théorème de dualité entre espaces de fonctions holomorphes à croissance exponentielle, J. Funct. Anal., Vol. 171 No. 1(2000) 1-14
- L. Gross, Potential theory on Hilbert space, J.Functional Analysis 1 (1967), 123-181.
- G. Kallianpur and J. Xiong, Stochastic Differential Equations in Infinite Dimensional Spaces, Lecture Notes Monograph series, Inst. Math. Statis., 26 (1995).
- S. J. Kang, Heat and Poission equations associated with Number operator in White Noise Analysis, Soochow J. of Math. 20 (1994), 45-55.

References

- R. Gannoun, R. Hachachi, H. Ouerdiane and A. Rezgui, Un théorème de dualité entre espaces de fonctions holomorphes à croissance exponentielle, J. Funct. Anal., Vol. 171 No. 1(2000) 1-14
- L. Gross, Potential theory on Hilbert space, J.Functional Analysis 1 (1967), 123-181.
- G. Kallianpur and J. Xiong, Stochastic Differential Equations in Infinite Dimensional Spaces, Lecture Notes Monograph series, Inst. Math. Statis., 26 (1995).
- S. J. Kang, Heat and Poission equations associated with Number operator in White Noise Analysis, Soochow J. of Math. 20 (1994), 45-55.
- H.-H. Kuo, Potential theory associated with Uhlenbeck-Ornstein process, J. Functional analysis 21 (1976), 63-75.

References

- Y.-J. Lee, Fundamental solutions for differential equations associated with the number operator, Trans. Amer. Math. Soc. 268 (1981), 467-476.

References

- Y.-J. Lee, Fundamental solutions for differential equations associated with the number operator, Trans. Amer. Math. Soc. 268 (1981), 467-476.
- M. A. Piech, Parabolic equations associated with the number operator, Trans. Amer. Math. Soc. 194(1974) 213-222.

References

- Y.-J. Lee, Fundamental solutions for differential equations associated with the number operator, Trans. Amer. Math. Soc. 268 (1981), 467-476.
- M. A. Piech, Parabolic equations associated with the number operator, Trans. Amer. Math. Soc. 194(1974) 213-222.
- B. Rajeev and S. Thangavelu, Probabilistic representations of solutions to the heat equation, Proc. Indian Acad. Sci. Math. Sci., 113 No. 3 (2003), 321Ü332.

References

- Y.-J. Lee, Fundamental solutions for differential equations associated with the number operator, Trans. Amer. Math. Soc. 268 (1981), 467-476.
- M. A. Piech, Parabolic equations associated with the number operator, Trans. Amer. Math. Soc. 194(1974) 213-222.
- B. Rajeev and S. Thangavelu, Probabilistic representations of solutions to the heat equation, Proc. Indian Acad. Sci. Math. Sci., 113 No. 3 (2003), 321Ű332.
- A. Barhoumi, H.-H. Kuo and H. Ouerdiane, Generalised Gross heat equation with noises, Soochow J. of Math. Vol. 32 No. 1 (2006) 113-125.

References

- Y.-J. Lee, Fundamental solutions for differential equations associated with the number operator, Trans. Amer. Math. Soc. 268 (1981), 467-476.
- M. A. Piech, Parabolic equations associated with the number operator, Trans. Amer. Math. Soc. 194(1974) 213-222.
- B. Rajeev and S. Thangavelu, Probabilistic representations of solutions to the heat equation, Proc. Indian Acad. Sci. Math. Sci., 113 No. 3 (2003), 321Ű332.
- A. Barhoumi, H.-H. Kuo and H. Ouerdiane, Generalised Gross heat equation with noises, Soochow J. of Math. Vol. 32 No. 1 (2006) 113-125.
- A. Barhoumi, H. Ouerdiane, H. Rguigui and A. Riahi, On operator-parameter transforms based on nuclear algebra of entire functions and applications, Quantum Probability and White Noise Analysis. 25(2010) 267-287.

THANK YOU

