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Motivation and main questions

Extension of the Gross Laplacian:

X →֒ H ≡ L2(R,dt) →֒ X′

↓
Fθ(N′) →֒ L2(X′,B (X′),µ) →֒ F ∗θ (N′)
↑ ↑

∆G −→ ∆V −→ ∆G,K
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Heat equation:
∂U
∂t

=
1
2

∆G,KU , U(0) = Φ ∈ F ∗θ (N′)

# Ut = EPx(T−W(t)Φ)
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Poisson equation (λI − 1
2

∆G,K )G = Φ ∈ F ∗θ (N′).
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§1. Backgrounds

Let H be an infinite dimensional real separable Hilbert space
with inner product 〈 · , · 〉, norm | · |0 and an ONB {en}∞

n=0. Let A
be an operator on H such that

Aen = λnen, n = 0,1,2, · · · and
∞

∑
n=0

λ−2
n < ∞.
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n=0. Let A
be an operator on H such that

Aen = λnen, n = 0,1,2, · · · and
∞

∑
n=0

λ−2
n < ∞.

For each p∈ R define

|ξ|2p =
∞

∑
n=0
〈ξ,en〉2λ2p

n = |Apξ|20 , ξ ∈ H.

Then: X := projlim
p→∞

Xp ⊂ H ⊂ indlim
p→∞

X−p =: X′.
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Let H , N and Np, p∈ R, be the complexifications of H, X, Xp.
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§1. Backgrounds

Let θ be a Young function. The conjugate function θ∗ of θ is

θ∗(x) = sup
t≥0

(
tx−θ(t)

)
, x≥ 0.
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§1. Backgrounds

Let θ be a Young function. The conjugate function θ∗ of θ is

θ∗(x) = sup
t≥0

(
tx−θ(t)

)
, x≥ 0.

For each p∈ R and m> 0, define Exp(Np,θ,m) to be the
space of entire functions f on Np satisfying the condition:

‖ f‖θ,p,m = sup
x∈Np

| f (x)|e−θ(m|x|p) < ∞.
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θ∗(x) = sup
t≥0

(
tx−θ(t)

)
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For each p∈ R and m> 0, define Exp(Np,θ,m) to be the
space of entire functions f on Np satisfying the condition:

‖ f‖θ,p,m = sup
x∈Np

| f (x)|e−θ(m|x|p) < ∞.

Then, we obtain the three nuclear spaces

Fθ(N
′)=

\

p∈N,m>0

Exp(N−p,θ,m) , Gθ(N)=
[

p∈N,m>0

Exp(Np,θ,m),

and the space of generalized functions on N′ : F ∗θ (N′).
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For p∈ R+ and m> 0, we define the Hilbert spaces

Fθ,m(Np)=
{
~ϕ = (ϕn)

∞
n=0 ; ϕn ∈ N⊗̂n

p , ‖ϕ‖θ,p,m < ∞
}

Gθ,m(N−p)=
{
~Φ = (Φn)

∞
n=0 ; Φn ∈ N⊗̂n

−p, ‖~Φ‖θ,−p,m < ∞
}

,

where θn = infr>0 eθ(r)/rn, n∈ N,

‖~ϕ‖2θ,p,m=
∞

∑
n=0

θ−2
n m−n|ϕn|2p , ‖~Φ‖2θ,−p,m=

∞

∑
n=0

(n!θn)
2mn|Φn|2−p
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0/2.
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§2. Generalized Gross Laplacian

⊙ For η ∈ N and ϕ(ξ) =
∞

∑
n=0
〈Φn,ξ⊗n〉 in Gθ∗(N), the holomorphic

derivative of ϕ at ξ ∈ N in the direction η is defined by

(Dηϕ)(ξ) := lim
λ→0

ϕ(ξ+λη)−ϕ(ξ)

λ
=

∞

∑
n=1

n
〈

Φn,η⊗̂ξ⊗(n−1)
〉

. (2)
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∞
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. (3)

⊙ The convolution product on Fθ∗(N′): Φ⋆Ψ := L −1(LΦLΨ).
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�

�

�

�Definition Let Φ∈ F ∗θ (N′). We define the white noise distributional
derivative of Φ in the direction η ∈ N by

∂ηΦ := L −1(Dη(LΦ)).
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§2. Generalized Gross Laplacian

�

�

�

�Theorem Let Φ∼ (Φn)n≥0 in F ∗θ (N′). Then, for any η ∈N, we have

∂ηΦ∼
(
(n+1)η⊗̂1Φn+1

)
n≥0 . (6)

Moreover, there exist p> 0 and m> 0 such that for q′> p and m′′< m
∥∥∥
−−→
∂ηΦ

∥∥∥
θ,−p,m

≤ ρ |η|p
∥∥∥
−→
Φ

∥∥∥
θ,−q′,m′′

where the constant ρ is given by

ρ2 = 8
(
m′eθ∗1‖iq,p‖HS

)2 ∞

∑
n=0

( e

m′′m′2
‖iq′,q‖HS

)2n

×
∞

∑
n=0

[
8m

(
m′e3‖iq,p‖HS

)2]n
.
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§2. Generalized Gross Laplacian

Let L (N,N′) be the set of continuous linear operators from N to N′.
In view of the kernel theorem, there is an isomorphism

L (N,N′) ≃ N′⊗N′ ≃ (N⊗N)′.

If K and τ(K) ∈ (N⊗N)′ are related under this isomorphism, we have

〈τ(K),ξ⊗η〉= 〈Kξ,η〉 , ξ, η ∈ N.

Moreover, it is a fact that, for arbitrary orthonormal basis of H such
that {ej} j∈N

⊂ X, τ(K) has the representation

τ(K) =
∞

∑
j=0

(K∗ej)⊗ej . (7)
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§2. Generalized Gross Laplacian

For ϕ(x) =
∞

∑
n=0
〈x⊗n,ϕn〉 ∈ Fθ(N

′), the K−Gross Laplacian

associated to K, (cf. Chung-Ji NMJ Vol. 147, 1997), is defined as

∆G(K)ϕ(x) =
∞

∑
n=0

DK∗enDen =
∞

∑
n=0

(n+2)(n+1)
〈
x⊗n,τ(K)⊗̂2ϕn+2

〉
,

(8)
where the contraction ⊗̂2 is defined by

〈
x⊗n,τ(K)⊗̂2ϕn+2

〉
=

〈
x⊗n⊗̂τ(K),ϕn+2

〉
.

In particular, if K = I , τ(I)≡ τ is the usual trace and ∆G(I)≡ ∆G is
the standard Gross Laplacian.
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§2. Generalized Gross Laplacian

⊙ Our framework, suggests to consider the restriction

K ∈ L (N′,N) ≃ N⊗N ⊂ (N⊗N)′ ≃ L (N,N′).

Accordingly, we introduce an other Laplacian operator in white noise
distribution theory as an operator acting on generalized functions.
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�

�

�

�Definition We define the Generalized Gross Laplacian acting on
generalized functions by

∆G,K :=
∞

∑
n=0

∂K∗en∂en. (10)
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�

�

�

�Definition We define the Generalized Gross Laplacian acting on
generalized functions by

∆G,K :=
∞

∑
n=0

∂K∗en∂en. (11)

⊙ Recall that, for η ∈ N, Dη is a restriction of ∂η to the space
Fθ(N′). Thus, from (8) and (9) we expect that the K−Gross
Laplacian ∆G(K) is actually a restriction of the Generalized Gross
Laplacian ∆G,K to the space Fθ(N′).
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§2. Generalized Gross Laplacian

�

�

�

�Theorem For Φ∼ (Φn)
∞
n=0 in F ∗θ (N′), ∆G,K Φ is represented by

∆G,K Φ∼
{
(n+2)(n+1)τ(K)⊗̂2Φn+2

}
n≥0 . (12)

Moreover, ∆G,K is a continuous linear operator from F ∗θ (N′) into itself.

In fact, there exists q′ > 0 and m′′ > 0 such that for any m′′ > m> 0
and p > q′, we have

∥∥∥
−−−→
∆G,K Φ

∥∥∥
θ,−p,m

≤ ρ |τ(K)|p
∥∥∥
−→
Φ

∥∥∥
θ,−q′,m′′

where

ρ2=8(θ∗2)
2
(
2m′e‖iq,p‖HS

)4 ∞

∑
n=0

(
4
√

mm′e2‖iq,p‖HS

)2n ∞

∑
n=0

( e

m′′m′2
‖iq′,q‖HS

)2n
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§2. Generalized Gross Laplacian

�

�

�

�
Proposition Let Φ, Ψ ∈ F ∗θ (N′), then the following equality holds

∆G,K (Φ⋆Ψ)

= ∆G,K (Φ)⋆Ψ+Φ⋆∆G,K(Ψ)+2
∞

∑
j=0

∂K∗ej (Φ)⋆∂ej (Ψ).
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§2. Generalized Gross Laplacian

�

�

�

�
Proposition Let Φ, Ψ ∈ F ∗θ (N′), then the following equality holds

∆G,K (Φ⋆Ψ)

= ∆G,K (Φ)⋆Ψ+Φ⋆∆G,K(Ψ)+2
∞

∑
j=0

∂K∗ej (Φ)⋆∂ej (Ψ).

⊙ Let Φ∼ (Φn)n≥0 in F ∗θ (N′). For K ∈ L (N′,N) we define a

generalized number operator N(K) ∈ L (F ∗θ (N′),F ∗θ (N′)) by

N(K)Φ∼ {γn(K)Φn}n≥0 , (14)

where γn(K) is given by γ0(K) = 0 and

γn(K) =
n−1

∑
j=0

I⊗ j ⊗K⊗ I⊗(n−1− j), n≥ 1.
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§2. Generalized Gross Laplacian

�

�

�

�Theorem SWN-CCR
Let K1, K2 ∈ L (N′,N). Then, the following commutation relations hold

1. [N(K1),N(K2)] = N([K1,K2])

2. [∆G,K1
,∆G,K2

] = 0

3. [∆∗G(K1),∆∗G(K2)] = 0

4. [N(K1),∆G,K2
] =−2∆

G,K∗1K2

5. [N(K1),∆∗G(K2)] = 2∆∗G(K1K2)

6. [∆G,K1
,∆∗G(K2)] = 4N(K∗2K1)+2〈τ(K2),τ(K1)〉I .

։ We obtain an ∞−dimensional realization of the SWN Lie algebra

Lie
〈

∆G,K1
, ∆∗G(K2), N(K3), I ; K1, K2, K3 ∈ L (N′,N)

〉
.
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§3. Generalized Gross heat equation

We shall construct a group {P tK ; t ∈ R} with infinitesimal generator
1
2∆G,K . Observe that symbolically P tK is given by

P tK = e
t
2∆G,K .

Thus, a formal computation suggests to define the heat operator P tK ,
acting on generalized function, by

P tKΦ∼
( ∞

∑
l=0

(n+2l)!t l

n!l !2l τ(K)⊗l⊗̂2l Φn+2l

)

n≥0
, Φ ∈ F ∗θ (N′).
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§3. Generalized Gross heat equation
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§3. Generalized Gross heat equation

�

�

�

�Theorem The family {P tK ; t ∈ R} is a strongly continuous group of
continuous linear operators from F ∗θ (N′) into itself with infinitesimal

generator 1
2∆G,K .
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§3. Generalized Gross heat equation

�

�

�

�Theorem The family {P tK ; t ∈ R} is a strongly continuous group of
continuous linear operators from F ∗θ (N′) into itself with infinitesimal

generator 1
2∆G,K .

For Φ ∈ F ∗θ (N′), the generalized Gross heat equation

∂U
∂t

=
1
2

∆G,KU , U(0) = Φ (17)

has a unique solution in F ∗θ (N′) given by

Ut = P tKΦ.
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§3. Generalized Gross heat equation

⊙ We proceed in order to give a probabilistic representation of the
solution of the heat equation (15). First, for p > 0, we keep the
notation K for its restriction to Xp into Xp. Moreover, we assume that
K is a symmetric, non-negative linear operator with finite trace. Let
(Ω,F ,(F t)t∈[0,T],P) be a filtered probability space with a filtration

(F t)t∈[0,T].
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§3. Generalized Gross heat equation

⊙ We proceed in order to give a probabilistic representation of the
solution of the heat equation (15). First, for p > 0, we keep the
notation K for its restriction to Xp into Xp. Moreover, we assume that
K is a symmetric, non-negative linear operator with finite trace. Let
(Ω,F ,(F t)t∈[0,T],P) be a filtered probability space with a filtration

(F t)t∈[0,T].

⊙ By a K-Wiener process W = (W(t))t∈[0,T] we mean an Xq-valued

process on (Ω,F ,P) such that

W(0) = 0,

W has P−a.s. continuous trajectories,
the increments of W are independent,

the increments W(t)−W(s), 0 < s≤ t have the

Gaussian law: P◦(W(t)−W(s))−1 =N (0,(t−s)K).
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§3. Generalized Gross heat equation

⊙ A K-Wiener process with respect to the filtration (F t)t∈[0,T] is a
K-Wiener process such that

W(t) is F t−adapted,

W(t)−W(s) is independent of Fs for all 0≤ s< t.
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§3. Generalized Gross heat equation

⊙ A K-Wiener process with respect to the filtration (F t)t∈[0,T] is a
K-Wiener process such that

W(t) is F t−adapted,

W(t)−W(s) is independent of Fs for all 0≤ s< t.

⊙ Later on we need define stochastic integrals of F ∗θ (N′)−valued
process. We use the theory of stochastic integration in Hilbert space
developed in Da Prato-Zabczyk 1992 and Kallianpur-Xiong 1995.
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§3. Generalized Gross heat equation

�

�

�

�Definition Let (Φ(t))0≤t≤T be a given L (Xq,F ∗θ (N′))−valued,
F t−adapted continuous stochastic process. Assume that there exist
m> 0 and q∈ N such that T ◦LΦ(t) ∈ L (Xq,Gθ,m(N−q)) and

P

(Z T

0

∥∥∥(T ◦LΦ(t))◦K1/2
∥∥∥

2

HS
dt < ∞

)
= 1. (18)

Then for t ∈ [0,T] we define the generalized stochastic integral

Z t

0
Φ(s)dW(s) ∈ F ∗θ (N′)

by T
(
L

(Z t

0
Φ(s)dW(s)

)
(ξ)

)
:=

Z t

0
T ((LΦ(s))(ξ))dW(s). (19)
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§3. Generalized Gross heat equation

⊙ For η ∈ N, the translation operator t−η on Gθ∗(N) is defined by

(t−ηϕ)(ξ) = ϕ(ξ+η), ξ ∈ N.
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§3. Generalized Gross heat equation

⊙ For η ∈ N, the translation operator t−η on Gθ∗(N) is defined by

(t−ηϕ)(ξ) = ϕ(ξ+η), ξ ∈ N.

⊙ Then, the translation operator T−η is defined on F ∗θ (N′) by

T−ηΦ := (L −1t−ηL )Φ

c© Joint with H. Rguigui 31st Conference on Quantum Probability and Related Topics,JNCASR, Bangalore, August 17, 2010– p. 21/29



§3. Generalized Gross heat equation

⊙ For η ∈ N, the translation operator t−η on Gθ∗(N) is defined by

(t−ηϕ)(ξ) = ϕ(ξ+η), ξ ∈ N.

⊙ Then, the translation operator T−η is defined on F ∗θ (N′) by

T−ηΦ := (L −1t−ηL )Φ

�

�

�

�Theorem T−W(t)Φ is an F ∗θ (N′)−valued continuous

F t−semimartingale which has the following decomposition

T−W(t)Φ = T−W(0)Φ+
∞

∑
j=0

Z t

0
∂ej (T−W(s)Φ)dW(s)

+
1
2

Z t

0
∆G,K (T−W(s)Φ)ds.
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§3. Generalized Gross heat equation

�

�

�

�Theorem The solution of the Cauchy problem

∂U
∂t

=
1
2

∆G,KU , U(0) = Φ

is given by
Ut = EPx(T−W(t)Φ), (20)

where (W(t))t∈[0,T] is a K-Wiener process with probability law P
x when

starting at W(0) = x∈ Xp. EPx denotes the expectation with respect
to P

x.
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§4. Generalized Gross white noise potential
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§4. Generalized Gross white noise potential

⊙ For any λ > 0, we define a functional GKΦ : Fθ(N′)−→ C by

〈〈GKΦ,ϕ〉〉 :=
Z ∞

0
e−λt〈〈EPx(T−W(t)Φ),ϕ〉〉dt. (22)
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§4. Generalized Gross white noise potential

⊙ For any λ > 0, we define a functional GKΦ : Fθ(N′)−→ C by

〈〈GKΦ,ϕ〉〉 :=
Z ∞

0
e−λt〈〈EPx(T−W(t)Φ),ϕ〉〉dt. (23)

⊙ Fact : GKΦ ∈ F ∗θ (N′).
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§4. Generalized Gross white noise potential

⊙ For any λ > 0, we define a functional GKΦ : Fθ(N′)−→ C by

〈〈GKΦ,ϕ〉〉 :=
Z ∞

0
e−λt〈〈EPx(T−W(t)Φ),ϕ〉〉dt. (24)

⊙ Fact : GKΦ ∈ F ∗θ (N′).
�

�

�

�Theorem Let K ∈ L (N′,N) and Φ ∈ F ∗θ (N′). Then,

G = GKΦ =
Z ∞

0
e−λt

EPx(T−W(t)Φ)dt

is a solution of the Poisson equation

(λI − 1
2

∆G,K )G = Φ.
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§4. Generalized Gross white noise potential

Outline of proof.
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§4. Generalized Gross white noise potential

Outline of proof.
⊙ By using the Itô’s formula, we compute

e−λtT−W(t)Φ = T−W(0)Φ+
∞

∑
j=0

Z t

0
e−λs∂ej (T−W(s)Φ)dW(s)

+
1
2

Z t

0
e−λs∆G,K (T−W(s)Φ)ds

−λ
Z t

0
e−λsT−W(s)Φds· (27)
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§4. Generalized Gross white noise potential

Outline of proof.
⊙ By using the Itô’s formula, we compute

e−λtT−W(t)Φ = T−W(0)Φ+
∞

∑
j=0

Z t

0
e−λs∂ej (T−W(s)Φ)dW(s)

+
1
2

Z t

0
e−λs∆G,K (T−W(s)Φ)ds

−λ
Z t

0
e−λsT−W(s)Φds· (29)

⊙ Hence, by taking expectations on both sides and the martingale
property, we get

e−λt
EPx(T−W(t)Φ) = Φ+EPx

Z t

0
e−λs(

1
2

∆G,K −λI)(T−W(s)Φ)ds·
(30)
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§4. Generalized Gross white noise potential

⊙ After the derivation of (26) with respect to t, we use the
probabilistic representation of the solution of the Generalized Gross
heat equation and (20), then we get the identification

∆G,K EPx(T−W(t)Φ) = EPx∆G,K (T−W(t)Φ).
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§4. Generalized Gross white noise potential

⊙ After the derivation of (26) with respect to t, we use the
probabilistic representation of the solution of the Generalized Gross
heat equation and (20), then we get the identification

∆G,K EPx(T−W(t)Φ) = EPx∆G,K (T−W(t)Φ).

⊙ Therefore, we obtain

e−λt
EPx(T−W(t)Φ) = Φ+

(1
2

∆G,K −λI
)Z t

0
e−λs

EPx(T−W(s)Φ)ds·
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§4. Generalized Gross white noise potential

⊙ After the derivation of (26) with respect to t, we use the
probabilistic representation of the solution of the Generalized Gross
heat equation and (20), then we get the identification

∆G,K EPx(T−W(t)Φ) = EPx∆G,K (T−W(t)Φ).

⊙ Therefore, we obtain

e−λt
EPx(T−W(t)Φ) = Φ+

(1
2

∆G,K −λI
)Z t

0
e−λs

EPx(T−W(s)Φ)ds·

⊙ Finally, letting t tend to infinity, we get

0 = Φ+
(1

2
∆G,K −λI

)
GKΦ
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