The use of blocking sets in Galois geometries and related research areas

Leo Storme

Ghent University Dept. of Mathematics Krijgslaan 281 - S22 9000 Ghent Belgium

Bangalore, August 31, 2010

(日)

OUTLINE

- **1** GALOIS GEOMETRIES
 - Finite fields
 - The projective plane PG(2, q)
 - The 3-space PG(3, q)
- 2 BLOCKING SETS
- **3** Maximal partial spreads of PG(3, q)
- APPLICATIONS IN CODING THEORY
 - Linear codes
 - Griesmer bound and minihypers
 - Extendability results and blocking sets
- **5** APPLICATIONS IN CRYPTOGRAPHY

Blocking sets Maximal partial spreads of PG(3, q) Applications in coding theory Applications in cryptography Finite fields The projective plane PG(2, q) The 3-space PG(3, q)

OUTLINE

1 GALOIS GEOMETRIES

- Finite fields
- The projective plane PG(2, q)
- The 3-space PG(3, q)
- **2** BLOCKING SETS
- [3] Maximal partial spreads of $\mathrm{PG}(3,q)$
- 4 APPLICATIONS IN CODING THEORY
 - Linear codes
 - Griesmer bound and minihypers
 - Extendability results and blocking sets
- **5** APPLICATIONS IN CRYPTOGRAPHY

Blocking sets Maximal partial spreads of PG(3, q) Applications in coding theory Applications in cryptography

FINITE FIELDS

Finite fields The projective plane PG(2, q)The 3-space PG(3, q)

- q = prime number.
 - Prime fields $\mathbb{F}_q = \{0, 1, \dots, q-1\} \pmod{q}$.
 - Binary field $\mathbb{F}_2=\{0,1\}.$
 - Ternary field $\mathbb{F}_3 = \{0,1,2\} = \{-1,0,1\}.$
- Finite fields \mathbb{F}_q : *q* prime power.

Blocking sets Maximal partial spreads of PG(3, q) Applications in coding theory Applications in cryptography Finite fields The projective plane PG(2, q)The 3-space PG(3, q)

From V(3, q) to PG(2, q)

Blocking sets Maximal partial spreads of PG(3, q)Applications in coding theory Applications in cryptography Finite fields The projective plane PG(2, q) The 3-space PG(3, q)

> VIVERSITE GENI

æ

FROM *V*(3, *q*) TO PG(2, *q*)

P2

Blocking sets Maximal partial spreads of PG(3, q) Applications in coding theory Applications in cryptography Finite fields The projective plane PG(2, q)The 3-space PG(3, q)

THE FANO PLANE PG(2, 2)

э

・ロト ・四ト ・ヨト ・ヨト

Blocking sets Maximal partial spreads of PG(3, q)Applications in coding theory Applications in cryptography

THE PLANE PG(2,3)

Finite fields The projective plane PG(2, q)The 3-space PG(3, q)

э

The use of blocking sets

Blocking sets Maximal partial spreads of PG(3, q)Applications in coding theory Applications in cryptography

Finite fields The projective plane PG(2, q) The 3-space PG(3, q)

GENT

FROM V(4, q) TO PG(3, q)

Blocking sets Maximal partial spreads of PG(3, q)Applications in coding theory Applications in cryptography

Finite fields The projective plane PG(2, q) The 3-space PG(3, q)

FROM V(4, q) TO PG(3, q)

Leo Storme

• P

æ

The use of blocking sets

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Blocking sets Maximal partial spreads of PG(3, q) Applications in coding theory Applications in cryptography

PG(3,2)

Finite fields The projective plane PG(2, q)The 3-space PG(3, q)

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Blocking sets Maximal partial spreads of PG(3, q) Applications in coding theory Applications in cryptography Finite fields The projective plane PG(2, q) The 3-space PG(3, q)

From V(n+1,q) to PG(n,q)

- From V(1, q) to PG(0, q) (projective point),
- 2 From V(2, q) to PG(1, q) (projective line),
- 3 . . .
- From V(i + 1, q) to PG(i, q) (i-dimensional projective subspace),
- 5 ...
- From V(n,q) to PG(n-1,q) ((n-1)-dimensional subspace = hyperplane),
- Solution V(n+1,q) to PG(n,q) (*n*-dimensional space).

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

OUTLINE

- GALOIS GEOMETRIES
 - Finite fields
 - The projective plane PG(2, q)
 - The 3-space PG(3, q)

2 BLOCKING SETS

- [3] Maximal partial spreads of $\operatorname{PG}(3,q)$
- 4 APPLICATIONS IN CODING THEORY
 - Linear codes
 - Griesmer bound and minihypers
 - Extendability results and blocking sets
- **5** APPLICATIONS IN CRYPTOGRAPHY

DEFINITION AND EXAMPLE

DEFINITION

Blocking set B in PG(2, q) is set of points, intersecting every line in at least one point.

EXAMPLE

Line L in PG(2, q).

(日)

DEFINITION

DEFINITION

(1) Point *r* of blocking set *B* in PG(2, *q*) is *essential* if $B \setminus \{r\}$ is no longer blocking set.

DEFINITION

Blocking set *B* is *minimal* if and only if all of its points are essential.

EXAMPLE

Line L of PG(2, q) is minimal blocking set B of size q + 1.

BOSE-BURTON THEOREM

THEOREM

For every blocking set B in PG(2, q), $|B| \ge q + 1$ and |B| = q + 1 if and only if B is equal to line L.

< □ > < □ > < □ > < □ > < □ >

Non-trivial blocking set in PG(2, q)

DEFINITION

Non-trivial blocking set B in PG(2, q) does not contain a line.

q + r(q) + 1 = size of smallest non-trivial blocking set in PG(2, q).

- (Blokhuis) r(q) = (q + 1)/2 for q > 2 prime,
- (Bruen) $r(q) = \sqrt{q}$ for q square,
- (Blokhuis) $r(q) = q^{2/3}$ for q cube power.

(日)

BAER SUBPLANE IN PG(2, q), q square

- Baer subplane in PG(2, q), q square, is subplane $PG(2, \sqrt{q})$.
- Baer subplane in PG(2, q), q square, is minimal non-trivial blocking set in PG(2, q), q square, of size $q + \sqrt{q} + 1$.

THEOREM

(1) (Bruen) Smallest non-trivial blocking sets in PG(2, q), qsquare, have size $q + \sqrt{q} + 1$, and are equal to Baer subplanes $PG(2, \sqrt{q})$. (2) (Szőnyi) Every non-trivial blocking set B in PG(2, q), $q = p^2$, p prime, of size |B| < 3(q + 1)/2, contains Baer subplane $PG(2, \sqrt{q})$.

GENERAL BLOCKING SETS

DEFINITION

Blocking set B in PG(n, q) with respect to k-subspaces is set of points, intersecting every k-subspace in at least one point.

EXAMPLE

(n-k)-dimensional subspace PG(n-k,q) in PG(n,q).

BOSE-BURTON THEOREM

THEOREM (BOSE AND BURTON)

For every blocking set B in PG(n, q) with respect to k-subspaces, $|B| \ge |PG(n - k, q)|$ and |B| = |PG(n - k, q)| if and only if B is equal to (n - k)-dimensional subspace PG(n - k, q).

BEUTELSPACHER-HEIM THEOREM

THEOREM (BEUTELSPACHER AND HEIM)

For non-trivial blocking set B in PG(n, q) with respect to k-subspaces, $|B| \ge q^{n-k} + r(q)q^{n-k-1} + q^{n-k-1} + q^{n-k-2} + \dots + q + 1$ and $|B| = q^{n-k} + r(q)q^{n-k-1} + q^{n-k-1} + q^{n-k-2} + \dots + q + 1$ if and only if B is equal to cone with (n - k - 2)-dimensional vertex and base minimal non-trivial blocking set of size q + r(q) + 1 in plane skew to vertex.

BEUTELSPACHER-HEIM THEOREM

Leo Storme The use of blocking sets

UNIVERSITE

э

< ≥> < ≥>

OUTLINE

GALOIS GEOMETRIES

- Finite fields
- The projective plane PG(2, q)
- The 3-space PG(3, q)
- **2** BLOCKING SETS
- **3** Maximal partial spreads of PG(3, q)
- 4 APPLICATIONS IN CODING THEORY
 - Linear codes
 - Griesmer bound and minihypers
 - Extendability results and blocking sets
- **5** APPLICATIONS IN CRYPTOGRAPHY

(日)

DEFINITIONS

- Spread S of PG(3, q) = set of q² + 1 lines of PG(3, q) partitioning point set of PG(3, q).
- Partial spread S of PG(3, q) = set of pairwise disjoint lines of PG(3, q).
- Partial spread *S* of PG(3, *q*) is called *maximal* when not contained in larger partial spread of PG(3, *q*).
- Partial spread S of size $q^2 + 1 \delta$ has deficiency δ .

- Poor plane: does not contain line of partial spread S.
- *Hole*: point of PG(3, q) not on line of partial spread S.
- Poor plane has $q + \delta$ holes if S has deficiency δ .

(日)

LINK BETWEEN MAXIMAL PARTIAL SPREADS AND BLOCKING SETS

Theorem

Let S be maximal partial spread of deficiency $\delta > 0$, then set of holes in poor plane is non-trivial blocking set of size $q + \delta$.

APPLICATION FOR q square

THEOREM (SZŐNYI)

Every non-trivial blocking set B in PG(2, q), $q = p^2$, p prime, of size |B| < 3(q+1)/2, contains Baer subplane PG(2, \sqrt{q}).

Consequence: For maximal partial spread S of deficiency δ , $\delta \leq (q+1)/2$, set of holes in poor plane contains Baer subplane of holes.

APPLICATION FOR q square

poor plane PG(2,q)

APPLICATION FOR q square

Question: Where do all these Baer subplanes of holes arise from?

Logical guess: They arise from Baer subgeometries $PG(3, \sqrt{q})$ completely consisting of holes.

(日)

RESULT ON MAXIMAL PARTIAL SPREADS

THEOREM (METSCH AND STORME)

Let $q = p^2$, p > 2 prime, let $\delta \le (q + 1)/2$. If S is maximal partial spread of size $q^2 + 1 - \delta$, then

A) $\delta = s(\sqrt{q} + 1)$ for some integer $s \ge 2$,

B) set of holes of PG(3, q) is union of s pairwise disjoint Baer subgeometries $PG(3, \sqrt{q})$.

Linear codes Griesmer bound and minihypers Extendability results and blocking sets

OUTLINE

- GALOIS GEOMETRIES
 - Finite fields
 - The projective plane PG(2, q)
 - The 3-space PG(3, q)
- **2** BLOCKING SETS
- [3] Maximal partial spreads of $\mathrm{PG}(\mathbf{3},q)$
- APPLICATIONS IN CODING THEORY
 - Linear codes
 - Griesmer bound and minihypers
 - Extendability results and blocking sets
- **5** APPLICATIONS IN CRYPTOGRAPHY

LINEAR CODES

Linear codes

Griesmer bound and minihypers Extendability results and blocking sets

• Linear [n, k, d]-code *C* over \mathbb{F}_q is:

- k-dimensional subspace of V(n, q),
- *minimum distance d* = minimal number of positions in which two distinct codewords differ.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Linear codes

Griesmer bound and minihypers Extendability results and blocking sets

(日)

LINEAR CODES

• Generator matrix of [n, k, d]-code C

$$G=(g_1\cdots g_n)$$

- $G = (k \times n)$ matrix of rank k,
- rows of *G* form basis of *C*,
- codeword of *C* = linear combination of rows of *G*.

Linear codes Griesmer bound and minihypers Extendability results and blocking sets

Remark

Remark: For linear [n, k, d]-code *C*, n, k, d do not change when column g_i in generator matrix

$$G = (g_1 \cdots g_n)$$

is replaced by non-zero scalar multiple. **Consequence:** Interpret columns g_i as projective points.

Linear codes Griesmer bound and minihypers Extendability results and blocking sets

(日)

GRIESMER BOUND AND MINIHYPERS

Question: Given

- dimension k,
- minimum distance d,

find minimal length *n* of [n, k, d]-code over \mathbb{F}_q . **Result: Griesmer (lower) bound**

$$n \geq \sum_{i=0}^{k-1} \left\lceil \frac{d}{q^i} \right\rceil = g_q(k, d).$$

Linear codes Griesmer bound and minihypers Extendability results and blocking sets

MINIHYPERS AND GRIESMER BOUND

Equivalence: (Hamada and Helleseth)

Griesmer (lower) bound equivalent with minihypers in finite projective spaces

(日)

Linear codes Griesmer bound and minihypers Extendability results and blocking sets

(日)

DEFINITION

DEFINITION

 $\{f, m; k - 1, q\}$ -minihyper *F* is:

- set of f points in PG(k 1, q),
- F intersects every (k 2)-dimensional space in at least m points.

(*m*-fold blocking set of size *f* with respect to hyperplanes of PG(k - 1, q))

Linear codes Griesmer bound and minihypers Extendability results and blocking sets

MINIHYPERS AND GRIESMER BOUND

• Let
$$C = [g_q(k, d), k, d]$$
-code over \mathbb{F}_q .

If generator matrix

$$G=(g_1\cdots g_n),$$

minihyper = $PG(k - 1, q) \setminus \{g_1, \ldots, g_n\}$.

Linear codes Griesmer bound and minihypers Extendability results and blocking sets

MINIHYPERS AND GRIESMER BOUND

Leo Storme The use of blocking sets

< ≥> < ≥>

Linear codes Griesmer bound and minihypers Extendability results and blocking sets

(日)

EXAMPLE

Example: Griesmer [8,4,4]-code over \mathbb{F}_2

minihyper = PG(3,2) $\{$ columns of $G \}$ = plane ($X_0 = 0$).

Linear codes Griesmer bound and minihypers Extendability results and blocking sets

CORRESPONDING MINIHYPER

< □ > < □ > < □ > < □ > < □ >

Leo Storme The use of blocking sets

Linear codes Griesmer bound and minihypers Extendability results and blocking sets

OTHER EXAMPLES

Example 1. Subspace $PG(\mu, q)$ in PG(k - 1, q) = minihyper of $[n = (q^k - q^{\mu+1})/(q - 1), k, q^{k-1} - q^{\mu}]$ -code (McDonald code).

(日)

Linear codes Griesmer bound and minihypers Extendability results and blocking sets

BOSE-BURTON THEOREM

THEOREM (BOSE-BURTON)

A minihyper consisting of $|PG(\mu, q)|$ points intersecting every hyperplane in at least $|PG(\mu - 1, q)|$ points is equal to a μ -dimensional space $PG(\mu, q)$.

(日)

Linear codes Griesmer bound and minihypers Extendability results and blocking sets

RAJ CHANDRA BOSE

R.C. Bose and R.C. Burton, A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the McDonald codes. *J. Combin. Theory*, 1:96-104, 1966.

• • • • • • • • • • • • •

Linear codes Griesmer bound and minihypers Extendability results and blocking sets

OTHER EXAMPLES

Example 2. t < q pairwise disjoint subspaces $PG(\mu, q)_i$, i = 1, ..., t, in PG(k - 1, q) = minihyper of $[n = (q^k - 1)/(q - 1) - t(q^{\mu+1} - 1)/(q - 1), k, q^{k-1} - tq^{\mu}]$ -code.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Linear codes Griesmer bound and minihypers Extendability results and blocking sets

CHARACTERIZATION RESULT

THEOREM (GOVAERTS AND STORME)

For q odd prime and $1 \le t \le (q+1)/2$, $[n = (q^k - 1)/(q - 1) - t(q^{\mu+1} - 1)/(q - 1), k, q^{k-1} - tq^{\mu}]$ -code *C*: minihyper is union of t pairwise disjoint PG(μ , q).

Linear codes Griesmer bound and minihypers Extendability results and blocking sets

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

OTHER CHARACTERIZATION RESULTS

- Minihypers involving subspaces of different dimension:
 - Hamada, Helleseth, and Maekawa: ϵ_0 points, ϵ_1 lines, ..., $\epsilon_{k-2} \operatorname{PG}(k-2,q)$, where $\sum_{i=0}^{k-2} \epsilon_i < \sqrt{q} + 1$,
 - De Beule, Metsch, and Storme: improvements to Hamada, Helleseth, and Maekawa.
 For *q* prime, Σ^{k-2}_{i=0} ε_i < (*q* + 1)/2.
- Minihypers involving subgeometries over $\mathbb{F}_{\sqrt{q}}$ in PG(k-1, q), *q* square:
 - Govaerts and Storme,
 - De Beule, Hallez, Metsch, and Storme.

Linear codes Griesmer bound and minihypers Extendability results and blocking sets

WELL-KNOWN EXTENDABILITY RESULT

Theorem

Every linear binary [n, k, d]-code C, d odd, is extendable to linear binary [n + 1, k, d + 1]-code.

(日)

Linear codes Griesmer bound and minihypers Extendability results and blocking sets

(日)

HILL-LIZAK RESULT

THEOREM (HILL AND LIZAK)

Let *C* be linear [n, k, d]-code over \mathbb{F}_q , with gcd(d, q) = 1 and with all weights congruent to 0 or $d \pmod{q}$. Then *C* can be extended to [n + 1, k, d + 1]-code all of whose weights are congruent to 0 or $d + 1 \pmod{q}$.

Proof: Subcode of all codewords of weight congruent to 0 (mod *q*) is linear subcode C_0 of dimension k - 1. If G_0 defines C_0 and

$$G=\left(rac{x}{G_0}
ight),$$

then

Linear codes Griesmer bound and minihypers Extendability results and blocking sets

HILL-LIZAK RESULT

 $\hat{G} = egin{pmatrix} x & 1 \ \hline & 0 \ G_0 & dots \ & 0 \end{pmatrix}$

defines C.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Linear codes Griesmer bound and minihypers Extendability results and blocking sets

(日)

GEOMETRICAL COUNTERPART OF LANDJEV

- Let C = [n, k, d]-code over \mathbb{F}_q .
- If generator matrix

$$G=(g_1\cdots g_n),$$

then $\{g_1, ..., g_n\} = (n, w = n - d; k - 1, q)$ -multiarc.

Galois geometries Blocking sets Maximal partial spreads of PG(3, q) Applications in coding theory

Applications in cryptography

Linear codes Griesmer bound and minihypers Extendability results and blocking sets

LINEAR CODES AND MULTIARCS

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Linear codes Griesmer bound and minihypers Extendability results and blocking sets

(日)

GEOMETRICAL COUNTERPART OF LANDJEV

- C linear [n, k, d]-code over 𝔽_q, gcd(d, q) = 1 and with all weights congruent to 0 or d (mod q). Then C can be extended to [n + 1, k, d + 1]-code all of whose weights are congruent to 0 or d + 1 (mod q).
- K =(n, w; k 1, q)-multiarc with gcd(n w, q) = 1 and intersection size of K with all hyperplanes congruent to n or w (mod q). Then K can be extended to (n + 1, w; k 1, q)-multiarc.

Linear codes Griesmer bound and minihypers Extendability results and blocking sets

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

GEOMETRICAL COUNTERPART OF LANDJEV

Proof: Hyperplanes *H* containing *n* (mod *q*) points of *K* form dual blocking set \tilde{B} with respect to codimension 2 subspaces of PG(k - 1, q). Also

$$\tilde{B}=\frac{q^{k-1}-1}{q-1}.$$

By dual of Bose-Burton, \tilde{B} consists of all hyperplanes through particular point P.

This point *P* extends *K* to (n + 1, w; k - 1, q)-multiarc.

Linear codes Griesmer bound and minihypers Extendability results and blocking sets

IMPROVED RESULTS

THEOREM (LANDJEV AND ROUSSEVA)

Let \mathcal{K} be (n, w; k - 1, q)-arc, $q = p^s$, with spectrum $(a_i)_{i \ge 0}$. Let $w \neq n \pmod{q}$ and

$$\sum_{i \not\equiv w \pmod{q}} a_i < q^{k-2} + q^{k-3} + \dots + 1 + q^{k-3} \cdot r(q), \quad (1)$$

where q + r(q) + 1 is minimal size of non-trivial blocking set of PG(2, q). Then \mathcal{K} is extendable to (n + 1, w; k - 1, q)-arc.

Linear codes Griesmer bound and minihypers Extendability results and blocking sets

BEUTELSPACHER-HEIM THEOREM

THEOREM (BEUTELSPACHER AND HEIM)

For non-trivial blocking set B in PG(n, q) with respect to k-subspaces, $|B| \ge q^{n-k} + r(q)q^{n-k-1} + q^{n-k-1} + q^{n-k-2} + \dots + q + 1$ and $|B| = q^{n-k} + r(q)q^{n-k-1} + q^{n-k-1} + q^{n-k-2} + \dots + q + 1$ if and only if B is equal to cone with (n - k - 2)-dimensional vertex and base minimal non-trivial blocking set of size q + r(q) + 1 in plane skew to vertex.

Linear codes Griesmer bound and minihypers Extendability results and blocking sets

IMPROVED RESULTS

Theorem

Let *C* be non-extendable [n, k, d]-code over \mathbb{F}_q , $q = p^s$, with gcd(d, q) = 1. If $(A_i)_{i \ge 0}$ is the spectrum of *C*, then $\sum_{i \ne 0, d \pmod{q}} A_i \ge q^{k-3} \cdot r(q)$, where q + r(q) + 1 is minimal size of non-trivial blocking set of PG(2, q).

OUTLINE

- GALOIS GEOMETRIES
 - Finite fields
 - The projective plane PG(2, q)
 - The 3-space PG(3, q)
- **2** BLOCKING SETS
- ${}_{(3)}$ Maximal partial spreads of $\operatorname{PG}(3,q)$
- APPLICATIONS IN CODING THEORY
 - Linear codes
 - Griesmer bound and minihypers
 - Extendability results and blocking sets

5 APPLICATIONS IN CRYPTOGRAPHY

(日)

Cryptography

- Transmitter *encrypts* message in secret message.
- Receiver *decrypts* secret message in original message.

APPLICATION IN PAY TELEVISION

(Korjik, Ivkov, Merinovich, Barg, and van Tilborg)

- subscribers = points of PG(2, q),
- codes = lines of PG(2, q),
- subscriber quits: codes of lines become invalid,
- new issue of codes: only necessary when codes of all lines through subscriber become invalid.

THE FANO PLANE PG(2, 2)

æ

◆□▶ ◆御▶ ◆注▶ ◆注▶

Thank you very much for your attention!

