Generators for Arithmetic Groups

T.N.Venkataramana

School of Mathematics, Tata Institute of Fundamental Research, Mumbai, India. venky@math.tifr.res.in

August 30, 2010

Suppose that $\Gamma \subset \textit{SL}_2(\mathbb{Z})$ is a torsion -free subgroup of finite index.

Suppose that $\Gamma \subset SL_2(\mathbb{Z})$ is a torsion -free subgroup of finite index. It is then clear that Γ is a free group which is finitely generated, say on *g* generators.

(4) (5) (4) (5)

4 A N

Suppose that $\Gamma \subset SL_2(\mathbb{Z})$ is a torsion -free subgroup of finite index. It is then clear that Γ is a free group which is finitely generated, say on *g* generators.

If $N \subset \Gamma$ is of finite index *m*, then *N* is also a free group, on *h* generators, say, and a comparison of the Euler Characteristics of Γ and *N* shows that

$$h-1=m(g-1).$$

Consequently, the smallest number of generators of N (namely h) *increases* with respect to the index m.

Similarly, if $\Gamma \subset SL_2(\mathbb{R})$ is a torsion-free co-compact discrete subgroup, then Γ is generated by 2*g* generators, call them a_1, a_2, \dots, a_g and $b_1, b_2, \dots b_g$, with one relation:

$$\prod [a_i, b_i] = 1.$$

In this relation, $[a_i, b_i] = a_i b_i a_i^{-1} b_i^{-1}$ is the commutator of a_i and b_i .

Similarly, if $\Gamma \subset SL_2(\mathbb{R})$ is a torsion-free co-compact discrete subgroup, then Γ is generated by 2*g* generators, call them a_1, a_2, \dots, a_g and $b_1, b_2, \dots b_g$, with one relation:

$$\prod [a_i, b_i] = 1.$$

In this relation, $[a_i, b_i] = a_i b_i a_i^{-1} b_i^{-1}$ is the commutator of a_i and b_i .

If $N \subset \Gamma$ is of finite index *m* and has 2g' generators, then a comparison of Euler characteristics of Γ and *N* shows that

$$m(2-2g) = 2-2g'.$$

Similarly, if $\Gamma \subset SL_2(\mathbb{R})$ is a torsion-free co-compact discrete subgroup, then Γ is generated by 2*g* generators, call them a_1, a_2, \dots, a_g and $b_1, b_2, \dots b_g$, with one relation:

$$\prod [a_i, b_i] = 1.$$

In this relation, $[a_i, b_i] = a_i b_i a_i^{-1} b_i^{-1}$ is the commutator of a_i and b_i .

If $N \subset \Gamma$ is of finite index *m* and has 2g' generators, then a comparison of Euler characteristics of Γ and *N* shows that

$$m(2-2g) = 2-2g'.$$

Consequence: The number of generators for N grows linearly with the index m.

We replace $SL_2(\mathbb{Z})$ by $SL_3(\mathbb{Z})$. Recall that $SL_3(\mathbb{Z})$ is generated by upper and lower triangular unipotent matrices of the form $1 + E_{ij}$ where 1 is the 3 × 3 identity matrix and for $1 \le i \ne j \le 3$, E_{ij} is the matrix whose *ij*-th entry is 1 and all other entries are zero.

We replace $SL_2(\mathbb{Z})$ by $SL_3(\mathbb{Z})$. Recall that $SL_3(\mathbb{Z})$ is generated by upper and lower triangular unipotent matrices of the form $1 + E_{ij}$ where 1 is the 3×3 identity matrix and for $1 \le i \ne j \le 3$, E_{ij} is the matrix whose *ij*-th entry is 1 and all other entries are zero.

A result of Bass, Milnor and Serre tells us that if $m \ge 1$ is any integer, then the subgroup Γ_m generated by the 6 elements $1 + mE_{ij}$ $1 \le i, j \le 3$ generates a subgroup of finite index in $SL_3(\mathbb{Z})$. We replace $SL_2(\mathbb{Z})$ by $SL_3(\mathbb{Z})$. Recall that $SL_3(\mathbb{Z})$ is generated by upper and lower triangular unipotent matrices of the form $1 + E_{ij}$ where 1 is the 3×3 identity matrix and for $1 \le i \ne j \le 3$, E_{ij} is the matrix whose *ij*-th entry is 1 and all other entries are zero.

A result of Bass, Milnor and Serre tells us that if $m \ge 1$ is any integer, then the subgroup Γ_m generated by the 6 elements $1 + mE_{ij}$ $1 \le i, j \le 3$ generates a subgroup of finite index in $SL_3(\mathbb{Z})$.

Consequence: if $N \subset SL_3(\mathbb{Z})$ is a normal subgroup of finite index of index *m*, then *N* contains Γ_m which is also of finite index and has at most 6 generators.

the case of $SL_n(\mathbb{Z})$

Suppose $N \ge 3$, 1 is the $N \times N$ identity matrix, and E_{ij} denotes the $N \times N$ matrix all of whose entries are zero except the *ij*-th entry, which is 1. Then, for $i \ne j$, the matrix $1 + tE_{ij}$ is unipotent and lies in $SL_n(\mathbb{Z})$ if $t \in \mathbb{Z}$.

Suppose $N \ge 3$, 1 is the $N \times N$ identity matrix, and E_{ij} denotes the $N \times N$ matrix all of whose entries are zero except the *ij*-th entry, which is 1. Then, for $i \ne j$, the matrix $1 + tE_{ij}$ is unipotent and lies in $SL_n(\mathbb{Z})$ if $t \in \mathbb{Z}$.

The result of Bass, Milnor and Serre says that if $m \ge 1$ is an integer and $N \ge 3$, then the group Γ_m generated by $1 + mE_{ij}$ for $1 \le i \ne j \le N$ is of finite index in $SL_N(\mathbb{Z})$. Suppose $N \ge 3$, 1 is the $N \times N$ identity matrix, and E_{ij} denotes the $N \times N$ matrix all of whose entries are zero except the *ij*-th entry, which is 1. Then, for $i \ne j$, the matrix $1 + tE_{ij}$ is unipotent and lies in $SL_n(\mathbb{Z})$ if $t \in \mathbb{Z}$.

The result of Bass, Milnor and Serre says that if $m \ge 1$ is an integer and $N \ge 3$, then the group Γ_m generated by $1 + mE_{ij}$ for $1 \le i \ne j \le N$ is of finite index in $SL_N(\mathbb{Z})$.

Clearly, Γ_m is generated by N(N-1) elements.

Suppose $N \ge 3$, 1 is the $N \times N$ identity matrix, and E_{ij} denotes the $N \times N$ matrix all of whose entries are zero except the *ij*-th entry, which is 1. Then, for $i \ne j$, the matrix $1 + tE_{ij}$ is unipotent and lies in $SL_n(\mathbb{Z})$ if $t \in \mathbb{Z}$.

The result of Bass, Milnor and Serre says that if $m \ge 1$ is an integer and $N \ge 3$, then the group Γ_m generated by $1 + mE_{ij}$ for $1 \le i \ne j \le N$ is of finite index in $SL_N(\mathbb{Z})$.

Clearly, Γ_m is generated by N(N-1) elements. If Δ is a normal subgroup of index m in $SL_n(\mathbb{Z})$, then $\Delta \supset \Gamma_m$. Consequently, every finite index subgroup Δ of $SL_n(\mathbb{Z})$ contains a finite index subgroup generated by C = N(N-1) elements. Thus the number of elements needed to generate *some* finite index subgroup of Δ is independent of the finite index subgroup Δ .

Given a finitely generated group Γ , does there exist

크

イロト イポト イヨト イヨ

Given a finitely generated group Γ , does there exist a number C depending on Γ such that

A (10) A (10) A (10)

Given a finitely generated group Γ , does there exist a number C depending on Γ such that every finite index subgroup Δ of Γ contains a smaller finite index subgroup generated by C elements?

Given a finitely generated group Γ , does there exist a number C depending on Γ such that every finite index subgroup Δ of Γ contains a smaller finite index subgroup generated by C elements?

• The answer is **no** for $SL_2(\mathbb{Z})$, as we have seen.

Given a finitely generated group Γ , does there exist a number C depending on Γ such that every finite index subgroup Δ of Γ contains a smaller finite index subgroup generated by C elements?

- The answer is **no** for $SL_2(\mathbb{Z})$, as we have seen.
- The answer is yes for the group SL_N(ℤ), for N ≥ 3. The constant C can be taken to be N(N − 1).

A B F A B F

Other Groups

The group $SL_N(\mathbb{Z})$ is a discrete subgroup of $SL_N(\mathbb{R})$ with finite covolume with respect to the invariant Haar measure on $SL_N(\mathbb{R})$. Furthermore, the group $SL_N(\mathbb{R})$ is a *simple Lie group*. That is, it does not have connected normal subgroups other than the trivial group and itself. The group $SL_N(\mathbb{Z})$ is a discrete subgroup of $SL_N(\mathbb{R})$ with finite covolume with respect to the invariant Haar measure on $SL_N(\mathbb{R})$. Furthermore, the group $SL_N(\mathbb{R})$ is a *simple Lie group*. That is, it does not have connected normal subgroups other than the trivial group and itself.

We will now consider a simple Lie group *G* and a discrete subgroup $\Gamma \subset G$ of finite covolume (Γ is then called a **lattice** in *G*).

The group $SL_N(\mathbb{Z})$ is a discrete subgroup of $SL_N(\mathbb{R})$ with finite covolume with respect to the invariant Haar measure on $SL_N(\mathbb{R})$. Furthermore, the group $SL_N(\mathbb{R})$ is a *simple Lie group*. That is, it does not have connected normal subgroups other than the trivial group and itself.

We will now consider a simple Lie group *G* and a discrete subgroup $\Gamma \subset G$ of finite covolume (Γ is then called a **lattice** in *G*).

We now ask the question: what are the lattices in simple Lie groups for which the foregoing question has a positive answer?

The group $SL_N(\mathbb{Z})$ is a discrete subgroup of $SL_N(\mathbb{R})$ with finite covolume with respect to the invariant Haar measure on $SL_N(\mathbb{R})$. Furthermore, the group $SL_N(\mathbb{R})$ is a *simple Lie group*. That is, it does not have connected normal subgroups other than the trivial group and itself.

We will now consider a simple Lie group *G* and a discrete subgroup $\Gamma \subset G$ of finite covolume (Γ is then called a **lattice** in *G*).

We now ask the question: what are the lattices in simple Lie groups for which the foregoing question has a positive answer? That is, is there a number C = C(G) depending only on *G* such that if Γ is a lattice in *G*, then Γ contains a subgroup of finite index which is generated by *C* elements?

Suppose *G* is an algebraic simple group defined over \mathbb{Q} . That is, $G \subset SL_N$ is a subgroup which is the set of zeroes of polynomials in the matrix entries x_{ij} ($1 \le i, j \le N$); moreover, these polynomials have coefficients in \mathbb{Q} .

Suppose *G* is an algebraic simple group defined over \mathbb{Q} . That is, $G \subset SL_N$ is a subgroup which is the set of zeroes of polynomials in the matrix entries x_{ij} ($1 \le i, j \le N$); moreover, these polynomials have coefficients in \mathbb{Q} .

We say that *G* is simple, if the only algebraic subgroups *H* of *G* defined over \mathbb{Q} , normal in *G* and so that $H(\mathbb{C})$ is connected are H = G and $H = \{1\}$.

Suppose *G* is an algebraic simple group defined over \mathbb{Q} . That is, $G \subset SL_N$ is a subgroup which is the set of zeroes of polynomials in the matrix entries x_{ij} ($1 \le i, j \le N$); moreover, these polynomials have coefficients in \mathbb{Q} .

We say that *G* is simple, if the only algebraic subgroups *H* of *G* defined over \mathbb{Q} , normal in *G* and so that $H(\mathbb{C})$ is connected are H = G and $H = \{1\}$.

Set $G = G(\mathbb{R})$. That is, $G(\mathbb{R}) = SL_N(\mathbb{R}) \cap G$. Let $\Gamma = G(\mathbb{Z})$). Then it is a well known result of Borel and Harish-Chandra that Γ is a lattice in $G(\mathbb{R})$.

- 4 週 ト 4 三 ト 4 三 ト -

Suppose $G \subset SL_N$ is an algebraic subgroup defined over \mathbb{Q} . let D_N be the subgroup of diagonal matrices in SL_N . Define the \mathbb{Q} -rank of G to be the supremum of the dimensions $dim(gGg^{-1} \cap D_N)$ as g runs through elements of $SL_N(\mathbb{Q})$.

Suppose $G \subset SL_N$ is an algebraic subgroup defined over \mathbb{Q} . let D_N be the subgroup of diagonal matrices in SL_N . Define the \mathbb{Q} -rank of G to be the supremum of the dimensions $dim(gGg^{-1} \cap D_N)$ as g runs through elements of $SL_N(\mathbb{Q})$.

It is a result of Borel and Harish Chandra that G/Γ is non-compact if and only if $\mathbb{Q} - rank(G)$ is at least one.

It also follows from the theory of algebraic groups that there then exist proper parabolic subgroups of *G* defined over \mathbb{Q} .

- P_0 be a minimal parabolic subgroup of *G* defined over \mathbb{Q} .
- U₀ be its unipotent radical.
- *T* ⊂ *P*₀ be a maximal Q-split torus. Then on the Lie algebra of *U*₀, *T* acts by positive roots.
- *U*₀⁻ the subgroup of *G* whose Lie algebra is spanned by the negative root spaces for the action of *T*.

If $\Gamma \subset G(\mathbb{Z})$ is of finite index, then the intersection $\Gamma \cap U_0$ is generated by $dim(U_0)$ -elements. This follows by an induction on the degree of nilpotency of the nilpotent group U_0 .

4 3 > 4 3

4 A N

A linear simple Lie group is a subgroup of $SL_n(\mathbb{R})$ for some integer *n*. Suppose that the real rank of *G* is at least one: recall that the real rank of *G* is the supremum of the numbers

 $dim(gGg^{-1} \cap D_n)$

where $g \in SL_n(\mathbb{R})$ and D_n is the subgroup of diagonal matrices in $SL_n(\mathbb{R})$.

A linear simple Lie group is a subgroup of $SL_n(\mathbb{R})$ for some integer *n*. Suppose that the real rank of *G* is at least one: recall that the real rank of *G* is the supremum of the numbers

 $dim(gGg^{-1} \cap D_n)$

where $g \in SL_n(\mathbb{R})$ and D_n is the subgroup of diagonal matrices in $SL_n(\mathbb{R})$.

For example, the real rank of $SL_N(\mathbb{R})$ is N - 1. The real rank of $SL_2(\mathbb{R})$ is 1 and for $N \ge 3$, the real rank of $SL_N(\mathbb{R})$ is $N - 1 \ge 2$.

< 回 > < 回 > < 回 > -

If G is a $\mathbb{Q}\text{-simple}$ algebraic group defined over $\mathbb{Q},$ and

< 47 ▶

< ∃ ►

If G is a \mathbb{Q} -simple algebraic group defined over \mathbb{Q} , and \mathbb{R} - rank(G) \geq 2,

< 47 ▶

If G is a \mathbb{Q} -simple algebraic group defined over \mathbb{Q} , and \mathbb{R} – rank(G) ≥ 2 , \mathbb{Q} – rank(G) ≥ 1 . Suppose $\Gamma \subset G(\mathbb{Z})$ is a subgroup of finite index.

4 A N

If G is a \mathbb{Q} -simple algebraic group defined over \mathbb{Q} , and $\mathbb{R} - rank(G) \ge 2$, $\mathbb{Q} - rank(G) \ge 1$. Suppose $\Gamma \subset G(\mathbb{Z})$ is a subgroup of finite index. Then the subgroup Γ' generated by $\Gamma \cap U_0$ and $\Gamma \cap U_0^-$ is of finite index in Γ . In particular, Γ contains a subgroup of finite index generated by $C = 2dim(U_0)$ elements.

< 3 > 4 3 >

If G is a \mathbb{Q} -simple algebraic group defined over \mathbb{Q} , and $\mathbb{R} - rank(G) \ge 2$, $\mathbb{Q} - rank(G) \ge 1$. Suppose $\Gamma \subset G(\mathbb{Z})$ is a subgroup of finite index. Then the subgroup Γ' generated by $\Gamma \cap U_0$ and $\Gamma \cap U_0^-$ is of finite index in Γ . In particular, Γ contains a subgroup of finite index generated by $C = 2dim(U_0)$ elements.

 When G = SL_N with N ≥ 3,and G = Sp_{2g} with g ≥ 2 this result is the Theorem of Bass,Milnor and Serre.

If G is a \mathbb{Q} -simple algebraic group defined over \mathbb{Q} , and $\mathbb{R} - rank(G) \ge 2$, $\mathbb{Q} - rank(G) \ge 1$. Suppose $\Gamma \subset G(\mathbb{Z})$ is a subgroup of finite index. Then the subgroup Γ' generated by $\Gamma \cap U_0$ and $\Gamma \cap U_0^-$ is of finite index in Γ . In particular, Γ contains a subgroup of finite index generated by $C = 2dim(U_0)$ elements.

- When G = SL_N with N ≥ 3,and G = Sp_{2g} with g ≥ 2 this result is the Theorem of Bass,Milnor and Serre.
- (Tits) G a split group of split rank at least two.

If G is a \mathbb{Q} -simple algebraic group defined over \mathbb{Q} , and $\mathbb{R} - rank(G) \ge 2$, $\mathbb{Q} - rank(G) \ge 1$. Suppose $\Gamma \subset G(\mathbb{Z})$ is a subgroup of finite index. Then the subgroup Γ' generated by $\Gamma \cap U_0$ and $\Gamma \cap U_0^-$ is of finite index in Γ . In particular, Γ contains a subgroup of finite index generated by $C = 2dim(U_0)$ elements.

- When G = SL_N with N ≥ 3,and G = Sp_{2g} with g ≥ 2 this result is the Theorem of Bass,Milnor and Serre.
- (Tits) *G* a split group of split rank at least two.
- (M.S.Raghunathan) $G \ge \mathbb{Q}$ simple group of \mathbb{Q} -rank at least two.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If G is a \mathbb{Q} -simple algebraic group defined over \mathbb{Q} , and $\mathbb{R} - rank(G) \ge 2$, $\mathbb{Q} - rank(G) \ge 1$. Suppose $\Gamma \subset G(\mathbb{Z})$ is a subgroup of finite index. Then the subgroup Γ' generated by $\Gamma \cap U_0$ and $\Gamma \cap U_0^-$ is of finite index in Γ . In particular, Γ contains a subgroup of finite index generated by $C = 2dim(U_0)$ elements.

- When G = SL_N with N ≥ 3,and G = Sp_{2g} with g ≥ 2 this result is the Theorem of Bass,Milnor and Serre.
- (Tits) *G* a split group of split rank at least two.
- (M.S.Raghunathan) $G \ge \mathbb{Q}$ simple group of \mathbb{Q} -rank at least two.
- (V.) In the remaining cases.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- If a group Γ has a subgroup of finite index with *m* generators, let us say that Γ is **virtually** *m* generated. Thus, the foregoing theorem says that every $\Gamma \subset G(\mathbb{Z})$ is virtually $2dimU_0$ -generated.
- It is thus of interest to know the smallest number *m* such that every arithmetic $\Gamma \subset G(\mathbb{Z})$ is virtually *m*-generated.

The Statement of the Theorem

In a joint work with Ritumoni Sarma, we have the following result.

Theorem

Suppose Γ is a lattice in a simple Lie group of real rank least two,

The Statement of the Theorem

In a joint work with Ritumoni Sarma, we have the following result.

Theorem

Suppose Γ is a lattice in a simple Lie group of real rank least two, Suppose that the quotient G/Γ is not compact. In a joint work with Ritumoni Sarma, we have the following result.

Theorem

Suppose Γ is a lattice in a simple Lie group of real rank least two, Suppose that the quotient G/Γ is not compact. Then every subgroup Δ of finite index in Γ contains a smaller subgroup of finite index generated by **three** elements.

- We have already seen that if G = SL₂(ℝ) then the result is false. The real rank of SL₂(ℝ) is one.
- More generally, if Γ is an arithmetic subgroup of SO(n, 1) with non-vasnishing first cohomology, (such groups exist), then the analogue of the result is false for Γ. Thus, the assumption on the rank being at least two is necessary.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・ ・

Proof for $SL_3(\mathbb{Z})$

Consider in $SL_3(\mathbb{Z})$, the set *P* of elements of the form

$$p = \begin{pmatrix} A & B \\ 0 & d \end{pmatrix}$$

where $A \in GL_2$ and *B* is a 2 × 1 matrix (a column vector in \mathbb{Z}^2), and 0 is the row vector (a 1 × 2-matrix) all of whose entries are zero. *d* is a scalar.

Consider in $SL_3(\mathbb{Z})$, the set *P* of elements of the form

$$p = \begin{pmatrix} A & B \\ 0 & d \end{pmatrix}$$

where $A \in GL_2$ and *B* is a 2 × 1 matrix (a column vector in \mathbb{Z}^2), and 0 is the row vector (a 1 × 2-matrix) all of whose entries are zero. *d* is a scalar.

P is a maximal parabolic subgroup of SL_3 . Its unipotent radical *U* consists of matrixes *u*

$$u = \begin{pmatrix} 1 & B \\ 0 & 1 \end{pmatrix}$$

where A = 1 is the identity 2×2 -matrix and d = 1.

$$m = \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$$

where $A \in GL_2$ and B = 0 is the 2 \times 1 column vector whose entries are zero.

$$m = \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$$

where $A \in GL_2$ and B = 0 is the 2 × 1 column vector whose entries are zero.

Denote by U^- , the transpose of the group U.

$$m = \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$$

where $A \in GL_2$ and B = 0 is the 2 × 1 column vector whose entries are zero.

Denote by U^- , the transpose of the group U.

The action of $M = GL_2$ on $U \simeq \mathbb{Q}^2$ is via the standard representation,

and on U^- the action is the dual of the standard representation.

$$m = \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$$

where $A \in GL_2$ and B = 0 is the 2 × 1 column vector whose entries are zero.

Denote by U^- , the transpose of the group U.

The action of $M = GL_2$ on $U \simeq \mathbb{Q}^2$ is via the standard representation, and on U^- the action is the dual of the standard representation. If $\theta \in M(\mathbb{Z}) = GL_2(\mathbb{Z})$ is an element of the group of units in a real quadratic extension then θ acts irreducibly on the \mathbb{Q} -representation $U = \mathbb{Q}^2$. If $\Gamma \subset SL_3(\mathbb{Z})$ is of finite index, then, Γ intersects non-trivially with the groups U and U^- . Pick an element $u \in U \cap \Gamma$ with $u \neq 1$. Similarly, pick an element $u^- \in U^- \cap \Gamma$, with $u^- \neq 1$.

If $\Gamma \subset SL_3(\mathbb{Z})$ is of finite index, then, Γ intersects non-trivially with the groups U and U^- . Pick an element $u \in U \cap \Gamma$ with $u \neq 1$. Similarly, pick an element $u^- \in U^- \cap \Gamma$, with $u^- \neq 1$.

If $\theta \in \Gamma \cap M$ is a unit in a real quadratic extension of \mathbb{Q} , then the group generated by the conjugates $\theta u \theta^{-1}$ in $U(\mathbb{Z})$ is of finite index in $U(\mathbb{Z})$. Consequently, the group Δ generated by θ, u, u^{-} intersects $U(\mathbb{Z})$ and $U^{-}(\mathbb{Z})$ in finite index subgroups. We now use the Bass-Milnor-Serre theorem to conclude that Δ is of finite index in $SL_3(\mathbb{Z})$.

A B A A B A

 Use a famous result of Margulis to conclude that Γ ⊂ G is arithmetic.

4 A N

< ∃ ►

- Use a famous result of Margulis to conclude that Γ ⊂ G is arithmetic.
- Use the fact that *G*/Γ is not compact to conclude that Γ has many unipotent elements. Given such a Γ, Γ = *G*(ℤ) for some Q-structure on *G*. We choose a suitaable maximal parabolic subgroup *P* of *G* defined over ℚ, and denote by *U* (by *U*[−] its unipotent radical (its opposite unipotent radical. We have *P* = *MU* where *M* is a suitable Levi subgroup.

- Use a famous result of Margulis to conclude that Γ ⊂ G is arithmetic.
- Use the fact that *G*/Γ is not compact to conclude that Γ has many unipotent elements. Given such a Γ, Γ = *G*(ℤ) for some Q-structure on *G*. We choose a suitaable maximal parabolic subgroup *P* of *G* defined over ℚ, and denote by *U* (by *U*[−] its unipotent radical (its opposite unipotent radical. We have *P* = *MU* where *M* is a suitable Levi subgroup.
- For most lattices Γ ⊂ G, there exist elements u ∈ U ∩ Γ,
 u⁻ ∈ U⁻ ∩ Γ and elements θ ∈ M ∩ Γ such that u, u⁻ and θ generate a subgroup of finite index in Γ.

- Use a famous result of Margulis to conclude that Γ ⊂ G is arithmetic.
- Use the fact that *G*/Γ is not compact to conclude that Γ has many unipotent elements. Given such a Γ, Γ = *G*(ℤ) for some Q-structure on *G*. We choose a suitaable maximal parabolic subgroup *P* of *G* defined over ℚ, and denote by *U* (by *U*[−] its unipotent radical (its opposite unipotent radical. We have *P* = *MU* where *M* is a suitable Levi subgroup.
- For most lattices Γ ⊂ G, there exist elements u ∈ U ∩ Γ, u⁻ ∈ U⁻ ∩ Γ and elements θ ∈ M ∩ Γ such that u, u⁻ and θ generate a subgroup of finite index in Γ.
 For some groups there does not exist such parabolic subgroup and we check case by case that by different methods, these arithmetic groups can also be shown to have the "'virtual three generator" property.

A (10) A (10) A (10)

Suppose that Γ is a co-compact lattice in a simple Lie group of real rank at least two. Is there a number *C* such that every subgroup Δ of finite index in Γ is virtually *C* generated.

I don't know a SINGLE example of Γ with this property.

Suppose that Γ is a co-compact lattice in a simple Lie group of real rank at least two. Is there a number C such that every subgroup Δ of finite index in Γ is virtually C generated.

I don't know a SINGLE example of Γ with this property.

Question

(Lubotzky) Suppose that $\Gamma \subset G$ is a non-cocompact lattice in a simple Lie group G. Is every such Γ virtually 2 generated?

Again, I do not know a single example.

< 3 > < 3</p>

A D M A A A M M

Suppose that Γ is a co-compact lattice in a simple Lie group of real rank at least two. Is there a number *C* such that every subgroup Δ of finite index in Γ is virtually *C* generated.

I don't know a SINGLE example of Γ with this property.

Question

(Lubotzky) Suppose that $\Gamma \subset G$ is a non-cocompact lattice in a simple Lie group G. Is every such Γ virtually 2 generated?

Again, I do not know a single example. Recently, I saw on Arxiv, a paper by Alan Ried which says that every subgroup of finite index in $SL_N(\mathbb{Z})$ ($N \ge 3$) is virtually 2 generated.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

THANK YOU FOR YOUR ATTENTION

æ