
Symmetric chains, Gelfand-Tsetlin (GZ) chains,

and the Hypercube

Murali K. Srinivasan (IIT Bombay)

arXiv: 1001.0280, 1004.2759

() September 8, 2010 1 / 37



Outline of Talk

I. Problem: Explicit block diagonalization of the Terwilliger algebra of the

hypercube.

II. (Very) Brief comments on coding theoretic motivation for the problem.

III. Sketch of (new) solution to the problem.

IV. The linear de Bruijn, Tengbergen, Kruyswijk (BTK) algorithm:

statement of Main Theorems MT1, MT2, and MT3.
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B(n) = Set of all subsets of {1, 2, . . . , n}, so |B(n)| = 2n

V (B(n)) = Complex vector space with B(n) as basis

Terwilliger algebra of the Hypercube

Tn = Commutant of the Sn action on V (B(n))

= EndSn(V (B(n)))

What is the dimension of Tn?
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Think of elements of V (B(n)) as column vectors of size 2n, with

coordinates indexed by B(n).

Represent f ∈ End(V (B(n)) (in the standard basis B(n)) as a B(n)×B(n)

matrix Mf . Entry in row X , col Y of Mf is denoted by Mf (X ,Y ).

Then it is easy to see that

f : V (B(n)) → V (B(n)) is Sn-linear iff

Mf (π(X ), π(Y )) = Mf (X ,Y ), X ,Y ∈ B(n), π ∈ Sn, i.e.,

Mf is constant on the orbits of the Sn-action on B(n)× B(n).
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(X ,Y ) and (X ′,Y ′) are in the same Sn-orbit iff

|X | = |X ′|, |Y | = |Y ′|, |X ∩ Y | = |X ′ ∩ Y ′|

Dimension of Tn

Mt
i ,j(X ,Y ) =


1 if |X | = i , |Y | = j , |X ∩ Y | = t

0 otherwise

{Mt
i ,j | i − t + t + j − t ≤ n, i − t, t, j − t ≥ 0}

is a basis of Tn and its cardinality is
(n+3

3

)
.
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Tn is a C ∗-algebra, so it has a Block Diagonalization: There exists a

B(n)× S unitary N, for some set S of size 2n, and positive integers

p0, q0, . . . , pm, qm such that N∗TnN is equal to the set of all S × S

block-diagonal matrices 

C0 0 . . . 0

0 C1 . . . 0

...
...

. . .
...

0 0 . . . Cm


where each Ck is a block-doagonal matrix with qk repeated,
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identical blocks of order pk

Ck =



Bk 0 . . . 0

0 Bk . . . 0

...
...

. . .
...

0 0 . . . Bk


Thus p2

0 + · · ·+ p2
m = dim(Tn) and p0q0 + · · ·+ pmqm = 2n.

By dropping duplicate blocks we get a positive semidefinitenes preserving

C ∗-algebra isomorphism

Φ : Tn
∼=

m⊕
k=0

Mat(pk × pk)
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Explicit Block Diagonalization (EBD)

Φ

 n∑
r ,s,t=0

x t
r ,sM

t
r ,s

 = (N0, . . . ,Nm),

Determine the entries of Nk?

Remark The decomposition of V (B(n)) into Sn-irreps. is classical, giving

m = bn/2c, pk = n − 2k + 1, qk =
(n
k

)
−

( n
k−1

)
, 0 ≤ k ≤ m.

() September 8, 2010 8 / 37



PART II

Polynomial time computable upper bounds on binary code size
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∅ ⊂ C ⊂ B(n) (proper subset) Binary Code

d(X ,Y ) = |X∆Y | Hamming distance of X ,Y ∈ C

A(n,d) = maximum size of a binary code of length n and minimum

distance among distinct elements at least d .

Computing A(n, d) is NP-Hard, so the focus is on lower and upper bounds

for A(n, d). Particularly interesting mathematically are algorithms that

compute upper bounds on A(n, d) in time polynomial in n. These are

based on the following two steps.
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(i) Upper bounding binary code size by the optimal value of an exponential

size semidefinite program (SDP).

(ii) Reducing the semidefinite program to polynomial size by explicit block

diagonalization of the commutants of certain group actions.

The following three results fall in this framework.

Set

Hn = all distance preserving automorphisms of B(n), so |Hn| = 2nn!
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Delsarte Bound (1973) (based on word pairs): needs EBD of the

Bose-Mesner algebra EndHn(V (B(n))) of the hypercube. Since the

Bose-Mesner algebra is commutative the resulting SDP is a LP.

Two recent breakthroughs in this subject are

Schrijver Bound (2005) (based on word triples): needs EBD of

EndSn(V (B(n))) = Tn.

Gijswijt, Mittelmann, Schrijver Bound (preprint) (based on word

quadruples): needs EBD of EndHn(V (B(n)× B(n))). The authors give

an ingenious reduction to EBD of Tn.
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PART III

EBD of Tn
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Lex Schrijver (2005) gave an elementary linear algebraic proof of EBD.

Then Frank Vallentin (2009) gave a representation theoretic proof based

on classical work of Charles Dunkl.

We give a very simple proof (in 5 steps) that uses only standard,

elementary results in representation theory. This proof also motivates the

linear BTK algorithm, which

gives an elementary constructive proof of EBD, meaning that the

conjugating unitary N is also written down explicitly.

gives a representation theoretic interpretation to N.
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Step 1 Binomial Inversion

Ms
l ,sM

s
s,k =

∑n
p=0

(p
s

)
Mp

l ,k , 0 ≤ s ≤ n

since the entry of the lhs in row X , col Y with |X | = l , |Y | = k is equal to

the number of common subsets of X and Y of size s. By binomial

inversion Ms
l ,k =

∑n
p=0(−1)p−s

(p
s

)
Mp

l ,pM
p
p,k , 0 ≤ s ≤ n

Meaning of this equation: Since Mp
p,k = (Mp

k,p)
∗ and

Φ(Mp
p,k) = (Φ(Mp

k,p))
∗ all the images under Φ can be written down once

we know the images of Mp
k,p. Now Mp

k,p is the inclusion matrix of

p-subsets vs. k-subsets. This leads us to the up operator.
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The up operator on the hypercube U : V (B(n)) → V (B(n)) is defined,

for X ∈ B(n), by

U(X ) =
∑

Y , where the sum is over all Y ⊇ X with |Y | = |X |+ 1.

B(n)i = set of all i-element subsets of{1, . . . , n}, 0 ≤ i ≤ n. So

V (B(n)) = V (B(n)0)⊕ V (B(n)1)⊕ · · · ⊕ V (B(n)n) (direct sum).

An element v ∈ V (B(n)) is homogeneous if v ∈ V (B(n)i ) for some i, and

we write r(v) = i .
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A symmetric Jordan chain (SJC) in V (B(n)) is a sequence

v = (v1, . . . , vh) of nonzero homogeneous elements of V (B(n)) such that

U(vi−1) = vi , for i = 2, . . . h, and U(vh) = 0

v is symmetric, i.e., r(v1) + r(vh) = n, if h ≥ 2, or else 2r(v1) = n, if

h = 1.

A symmetric Jordan basis (SJB) of V (B(n)) is a basis of V (B(n))

consisting of a disjoint union of SJC’s.
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Let 〈, 〉 denote the standard inner product on V (B(n)), i.e.,

〈X ,Y 〉 = δ(X ,Y ), (Kronecker delta) for X ,Y ∈ B(n). The length√
〈v , v〉 of v ∈ V (B(n)) is denoted ‖ v ‖.
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Theorem 1 There exists an SJB J(n) of V (B(n)) such that

(i) The elements of J(n) are orthogonal with respect to 〈, 〉.

(ii) (Singular Values) Let 0 ≤ k ≤ bn/2c and let (xk , . . . , xn−k) be any

SJC in J(n) starting at rank k and ending at rank n − k (there are(n
k

)
−

( n
k−1

)
of these). Then

‖ xu+1 ‖
‖ xu ‖

=
√

(u + 1− k)(n − k − u)
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Step 2 sl(2, C) action on V (B(n)): there exists an SJB

Down operator D on V (B(n)) - analogous to the up operator.

Define the operator H on V (B(n)) by H(vi ) = (2i − n)vi ,

vi ∈ V (B(n)i ), i = 0, 1, . . . , n.

Easy to check that [H,U] = 2U, [H,D] = −2D, and [U,D] = H.

Thus the linear map sl(2, C) → gl(V (B(n))) given by 0 1

0 0

 7→ U,

 0 0

1 0

 7→ D,

 1 0

0 −1

 7→ H

is a representation of sl(2, C).
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Let W ⊆ V (B(n)) be an l + 1 dimensional irreducible sl(2, C)-submodule.

Then sl(2, C) theory gives a basis of W such that the eigenvalues of H on

this basis are −l ,−l + 2, . . . , l − 2, l . So the elements of this basis are

symmetrically located about the middle. Write this basis as (xk , . . . , xn−k),

where r(xi ) = i , for all i . Put xk−1 = xn−k+1 = 0. We have

U(xu) = xu+1, D(xu+1) = (u + 1− k)(n − k − u)xu (*).

Thus there exists a SJB of V (B(n)).

Easy to see that in any SJB of V (B(n)) the subspace spanned by a

SJC is an irreducible sl(2, C)-submodule and that (*) applies.
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Step 3 Sn action on V (B(n)): Orthogonal SJB

Existence of orthogonal SJB follows from:

(a) Existence of some SJB.

(b) U is Sn-linear.

(c) V (B(n)k) is a multiplicity free Sn-module, for all k (well known).

(d) For a finite group G , a G -invariant inner product on an irreducible

G -module is unique upto scalars.
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Step 4 Singular Values

Let J(n) be a orthogonal SJB and let (xk , . . . , xn−k) be a SJC in J(n).

We have from formula (*)

〈xu+1,U(xu)〉 = 〈xu+1, xu+1〉

〈D(xu+1), xu〉 = (u + 1− k)(n − k − u)〈xu, xu〉

The left hand sides of the identities above are equal since U and D are

adjoints of each other with respect to the standard inner product.
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Step 5 Explicit block-diagonalization of Tn

Normalize an orthogonal SJB J(n) to get a orthonormal basis J ′(n). The

subspace spanned by the vectors in any SJC in J(n) is closed under U and

D and thus, by the identity Ms
l ,k =

∑n
p=0(−1)p−s

(p
s

)
Mp

l ,pM
p
p,k is closed

under Tn.

The action of Mp
l ,p (and hence of Ms

l ,k) on the vectors in J ′(n) can be

written down explicitly using the singular values.

Since any two SJC’s in J(n) from k to n − k look alike, we need to pick

just one chain from k to n − k, for k = 0, 1, . . . , bn/2c. Thus we get
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m = bn/2c, pk = n − 2k + 1, qk =
(n
k

)
−

( n
k−1

)
, k = 0, . . . ,m.

Doing this calculation yields: Write

Φ

 n∑
r ,s,t=0

x t
r ,sM

t
r ,s

 = (N0, . . . ,Nm),

where, for k = 0, . . . , bn/2c, the rows and columns of Nk are indexed by

{k, k + 1, . . . , n − k}. For k ≤ i , j ≤ n − k the entry in row i , col j of Nk

is given by Schrijver’s formula

n∑
t=0

n∑
u=0

(−1)u−t

(
u

t

)(
n − 2k

u − k

)(
n − k − u

i − u

)(
n − k − u

j − u

)
x t
i ,j√(n−2k

i−k

)(n−2k
j−k

)
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PART IV

Explicit Construction of SJB:

The linear de Bruijn, Tengbergen, Kruyswijk (BTK) algorithm
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Up operator on product of Chains: M(n; k1, k2, . . . , kn)

n, k1, . . . , kn positive integers

M(n; k1, . . . , kn) = {(x1, . . . , xn) : 0 ≤ xi ≤ ki , ∀i}

(x1, . . . , xn) ≤ (y1, . . . , yn) iff xi ≤ yi , ∀i r(x1, . . . , xn) = x1 + x2 + · · ·+ xn

r(M(n; k1, . . . , kn)) = k1 + k2 + · · ·+ kn

dim (V (M(n; k1, . . . , kn))) = (k1 + 1) · · · (kn + 1)

Two special cases

Uniform case: M(n, k) = M(n; k, . . . , k), dim (V (M(n, k))) = (k + 1)n

Hypercube: B(n) = M(n; 1, . . . , 1)
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Up operator on M(n; k1, k2, . . . , kn).

Example: n = 3, k1 = 3, k2 = 2, k3 = 2

U((0, 2, 1)) = (1, 2, 1) + (0, 2, 2)

U((2, 1, 1)) = (3, 1, 1) + (2, 2, 1) + (2, 1, 2)

Two applications, namely, proof of unimodality of the Schur function

specialization sλ(1, q, . . . , qk), λ ` n (see Exercise 7.75 in Stanley’s

EC-2) and the product theorem for Peck posets (see Chapter 6 of the

book “Sperner Theory” by Engel) suggest that we consider general chain

products and not just hypercubes.
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One approach to constructing an explicit SJB of V (M(n; k1, . . . , kn)) is to

use tensor products: using (*) define a sl(2, C) action on

V (M(1; ki )), 0 ≤ i ≤ n by (here we take ki + 1− 0)

U(u) = u + 1, D(u + 1) = (u + 1)(ki − u)u.

and then consider the tensor product representation. Note that, in the

general case, U and D are NOT adjoint under the standard inner product.

The starting point of this paper was the observation that a simpler

combinatorial approach is to linearize the famous de Bruijn,

Tengbergen, and Kruyswijk (1951) (BTK) bijection.
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A symmetric chain in a graded rank-n poset P is a sequence (p1, . . . , ph)

of elements of P such that pi covers pi−1, for i = 2, . . . h, and

r(p1) + r(ph) = n, if h ≥ 2, or else 2r(p1) = n, if h = 1.

A symmetric chain decomposition (SCD) of a graded poset P is a

decomposition of P into pairwise disjoint symmetric chains.

de Bruijn, Tengbergen, and Kruyswijk (1951) gave a bijection

(essentially, just one figure) that constructs an explicit SCD of

M(2; p, q). This is then inductively used to construct an explicit

SCD of M(n; k1, k2, . . . , kn).
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We can think of SJB’s as linear analogs of SCD’s. Even more, there is a

natural, elementary linear algebraic algorithm, the linear BTK algorithm,

that is a linearization of the set theoretic BTK bijection.

MT 1 The linear BTK algorithm constructs an explicit SJB of

V (M(n, k1, . . . , kn)). The vectors in this basis have integral coefficients

when expressed in the standard basis M(n, k1, . . . , kn).

The method first constructs an explicit SJB of V (2; p, q) and then uses it

repeatedly in the general case.
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Can we characterize the basis produced by the linear BTK

algorithm? There is an elegant answer for the hypercube (k = 1).

MT 2 Let O(n) be the SJB produced by the linear BTK algorithm when

applied to B(n).

(i) The elements of O(n) are orthogonal with respect to 〈, 〉.

(ii) Let (xk , . . . , xn−k), 0 ≤ k ≤ bn/2c be a SJC in O(n). Then

‖ xu+1 ‖
‖ xu ‖

=
√

(u + 1− k)(n − k − u), k ≤ u < n − k.

Moreover, this orthogonal SJB is canonically defined.
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Symmetric Gelfand-Tsetlin (GZ) basis of V (B(n))

Consider an irreducible Sn-module V . Since the branching is simple the

decomposition of V into irreducible Sn−1-modules is canonical. Each of

these modules, in turn, decompose canonically into irreducible

Sn−2-modules. Iterating this construction we get a canonical

decomposition of V into irreducible S1-modules, i.e., one dimensional

subspaces. This canonical basis of V , determined upto scalars, is called

the Gelfand-Tsetlin basis (GZ-basis). Note that it is orthogonal under

the (unique upto scalars) Sn-invariant inner product.
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Now observe the following:

(i) If f : V → W is a Sn-linear isomorphism between irreducibles V ,W

then the GZ-basis of V goes to the GZ-basis of W .

(ii) Let V be a Sn-module whose decomposition into irreducibles is

multiplicity free. By the GZ-basis of V we mean the union of the GZ-bases

of the various irreducibles occuring in the (canonical) decomposition of V

into irreducibles. Then the GZ-basis of V is orthogonal wrt any

Sn-invariant inner product on V .
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Now consider the Sn action on V (B(n)). Since U is Sn-linear, the action is

multiplicity free on V (B(n)k), for all k, and there exists a SJB of

V (B(n)), it follows from points (i) and (ii) above that there is a

canonically defined orthogonal SJB of V (B(n)) (upto a common scalar

multiple on each symmetric Jordan chain) that consists of the union of the

GZ-bases of V (B(n)k), 0 ≤ k ≤ n. We call this basis the symmetric

Gelfand-Tsetlin basis of V (B(n)).
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MT 3 When applied to the poset B(n) the linear BTK algorithm produces

the Gelfand-Tsetlin basis of V (B(n)).

Proof is a simple application of Vershik-Okounkov theory:

characterization of GZ-basis as simultaneous eigenvectors for the

Young-Jucys-Murphy elements (YJM-elements).

Xi = (1, i) + (2, i) + · · ·+ (i − 1, i) ∈ CSn, 1 ≤ i ≤ n.

() September 8, 2010 36 / 37



THANK YOU
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