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Motivation for extremal elements in Lie algebras

1. Lie algebraic equivalent of long root groups

2. Universal axiom system for point-line spaces of all spherical
types

3. Classification of simple Lie algebras
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Lie algebra

Definition

A vector space L over a field k supplied with a multipication [·, ·]
such that

[x , x ] = 0 for each x ∈ L

[x , [y , z ]] = [[x , y ], z ] + [y , [x , z ]] for each x , y , z ∈ L

Nonassociative

Example: [x , y ] = xy − yx on an associative algebra

Linear, first order, version of Lie groups

Ideals, solvability, simplicity, ...
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Extremal elements

Let L be a Lie algebra over k.

Definition

If char(k) 6= 2, then x ∈ L is extremal if x 6= 0 and
[x , [x , y ]] = 2gx(y)x and (if char(k) even)

[x , [y , [x , z ]]] = gx([y , z ])x − gx(z)[x , y ]− gx(y)[x , z ].

Identity: Premet

Example: rank 1 matrices X with X 2 = 0 in gl(kn)

Notation: E (L) or E
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Two more examples

Let V be a vector space over k.

Symplectic form f . Each infinitesimal symplectic transvection,
of the form

x 7→ f (x , a)a

for a ∈ V , is extremal in sp(V , f ), the symplectic Lie algebra
wrt f .

Quadratic form κ. Denote by f the associated bilinear form.
Each infinitesimal Siegel transvection, of the form

x 7→ f (x , a)b + f (x , b)a

for a, b ∈ V with κ(a) = f (a, b) = κ(b) = 0), is extremal in
o(V , κ), the orthogonal Lie algebra wrt κ.



Extremal elements Geometry of extremal elements Root filtration spaces Fischer spaces Conclusion

Automorphisms

Definition

For x ∈ L and t ∈ k the map exp(x , t) : L → L is given by

exp(x , t)y = y + t[x , y ] + t2gx(y)x .

Theorem

Then t 7→ exp(x , t) is an injective homomorphism of groups
k+ → Aut(L).
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Basic properties of extremal elements

Theorem

Let x , y ∈ E and z ∈ L.

(i) The subalgebra 〈E〉 of L generated by E is linearly spanned
by E.

(ii) On 〈E〉 there is a unique symmetric bilinear form g with value
gx(y) at (x , y).

(iii) For all a, b, c ∈ 〈E〉, we have g([a, b], c) = g(a, [b, c]). In
particular, the form g of (ii) is associative.
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Degenerate extremal elements

Definition

x ∈ E (L) is a sandwich if gx = 0.

Equivalently: ad2
x = adxadyadx = 0 for all y ∈ L

Sandwiches lie in Rad(g) = {x ∈ L | g(x , L) = 0}
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Nilpotent ideals

Proposition

Assume L = 〈E〉. Then Rad(g) is a nilpotent ideal of L containing
all sandwiches of L.

If x ∈ E(L) is not a sandwich, then
x + Rad(g) ∈ E (L/Rad(g)) is not a sandwich.

In passing from L to L/Rad(g), all sandwiches disappear and
all non-sandwich extremals remain.
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Algebraic groups

G : k-split connected reductive linear algebraic group with
reductive rank n and semisimple rank `

T : a maximal split torus of G

Φ: the root system with respect to T

X : the character group of T

Y : its dual so there is a bilinear pairing 〈·, ·〉 → Z
Basis e1, . . . , en of X and dual f1, . . . , fn of Y

Φ?: coroot system in Y with a bijective correspondence such that
〈α, α?〉 = 2

L: Lie algebra of G

H: Lie subalgebra of T
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Chevalley basis of the Lie algebra of an algebraic group

Theorem

L has basis elements eα for α ∈ Φ and hi ∈ H for i = 1, . . . , n with
structure constants:

[hi , hj ] = 0

[eα, hi ] = 〈α, fi 〉eα,

[e−α, eα] =
n∑

i=1

〈ei , α
?〉hi ,

[eα, eβ] =

{
Nαβeα+β for α + β ∈ Φ,

0 for α + β /∈ Φ, β 6= −α,

for certain integral constants Nα,β.
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Extremal elements in Chevalley basis

If α ∈ Φ long root, then eα ∈ E(L).

Idea: [eα, [eα, eβ]] ⊆ ke2α+β

G → Aut(L) via adjoint representation

The full G -orbit on eα is contained in E(L).
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Previous examples

E(sl(V )): Dynkin type An−1 if dim(V ) = n.

E(sp(V , f )): Dynkin type Cn if dim(V ) = 2n and f
non-degenerate.

E(o(V , κ)): Dynkin type Dn if dim(V ) = 2n and type Bn if
dim(V ) = 2n + 1 if κ non-degenerate.
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Fundamental properties of extremal elements

There are five essentially different positions two extremal elements
can be in with respect to each other.

Definition

For i ∈ {−2,−1, 0, 1, 2}, define relations Ei on E as follows.

i xEiy name

−2 kx = ky identical

−1 [x , y ] = 0, kx + ky ⊆ E ∪ {0}, kx 6= ky strongly commuting

0 [x , y ] = 0, kx + ky 6⊆ E ∪ {0} polar

1 [x , y ] 6= 0, g(x , y) = 0 special

2 g(x , y) 6= 0 hyperbolic
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Two or generator cases

Lemma

Let x , y , z ∈ E.

(i) The subalgebra of L generated by x and y is at most
3-dimensional. It is commutative if xEiy with i ≤ 0, it is
isomorphic to the Heisenberg algebra if xE1y, and it is
isomorphic to sl(k2) if xE2y.

(ii) The subalgebra 〈x , y , z〉 is at most 8-dimensional. It is
nilpotent, isomorphic to (a possibly twisted form of) sl(k3)
(like u(R3, κ) where κ is a non-compact unitary form), or an
extension of sl(k2) by a nilpotent ideal.
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Five generators?

dim(L) < ∞ if L is generated by a finite number of extremal
elements is finite.
There is a nilpotent Lie algebra of maximal dimension f (N)
for any given finite number N of extremal generators.
f (2) = 3 also attained by sl(k2)
f (3) = 8 also attained by sl(k3)
f (4) = 28 also attained by o(k8, κ)
f (5) = 537. The Lie algebras of types E6, E7, and E8 are
generated by 5 extremal elements.

Problem

Is there a ‘generic’ Lie algebra of maximal possible dimension 537
in the 5 generator case?

‘genericity’ is made precise by Draisma and in’t panhuis.
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Classification in three steps
Theorem

If E contains a non-sandwich, L is simple, and k = k, then L is the
Lie algebra of an algebraic group.

Due to Benkart, Block, et al. Easy by use of root group elements
exp(x , t) (x ∈ E, t ∈ k). New —geometric— approach to
classification:

First, produce a point-line geometry from L.

Second, characterize these geometries as certain (root)
shadow spaces of spherical buildings.

Third, given a root shadow space (E ,F), show that, up to
isomorphism, there is at most one simple Lie algebra whose
geometry is isomorphic to (E ,F). incomplete.
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Existence of extremal elements

Theorem

If k is algebraically closed of characteristic distinct from 2 and 3
and L is finite-dimensional and simple, then L has an extremal
element.

result by Premet

self-contained proof by Tange

continue in this vein...replacing intricate long literature with
slick proofs using geometry
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The Witt example

char(k) = 5

W1,1(5): vector space over k with basis z i∂z , for i = 0, . . . , 4.

Lie bracket on W1,1(5) determined by

[z i∂z , z
j∂z ] := (j − i)z i+j−1∂z ,

with the convention that z i = 0 whenever i /∈ {0, . . . , 4}.
x = −z2∂z is extremal in W1,1(5) and not a sandwich.

z3∂z is a sandwich in W1,1(5).

W1,1(5) is not generated by E(W1,1(5)).
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Existence of more extremal elements

Theorem

char(k) 6= 2, 3 and L simple. Suppose that L contains an extremal
element that is not a sandwich. Then either k has characteristic 5
and L ∼= W1,1(5) or L = 〈E 〉.

result joint with Ivanyos and Roozemond

Jacobson-Morozov to produce second extremal element

next use a filtration as to be discussed

12 occurs in denominators of formulas used
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Filtration wrt an extremal element
Proposition

x , y ∈ E with gx(y) = 1. Write
U = {u ∈ L | gx(u) = gy (u) = gx([y , u]) = 0}.

1 There is a Z-grading L =
⊕

i Li (x , y) with L−2(x , y) = kx,
L2(x , y) = ky, L0(x , y) = NL(kx) ∩ NL(ky),
L−1(x , y) = [x ,U], and L1(x , y) = [y ,U].

2 There is a filtration

L≤−2(x) ⊆ L≤−1(x) ⊆ L≤0(x) ⊆ L≤1(x) ⊆ L≤2(x) = L,

where L≤i (x) =
∑i

j=−2 Lj(x , y). Moreover,
L≤1(x) = {z ∈ L | gx(z) = 0}, L≤0(x) = NL(kx), and
L≤−1(x) = kx + [x , L≤1(x)].

So L≤i (x) are independent of the choice of y .
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Extremal points in projective space

Ei on E lead to projective relations Ei on E , the projective
points of members of E.
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The geometry of L = 〈E 〉

The relations Ei are symmetric and partition E× E, and the
Ei partition E × E .

The geometry of L:

point set E ;
line set F : all projective lines of L contained in E .
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Fundamental properties of extremal elements

Theorem

L = 〈E(L)〉 has no sandwiches. The space (E ,F) with the
symmetric relations Ei (i ∈ {−2,−1, 0, 1, 2}) on E satisfies the
following properties, where we write E≤i for ∪j≤iEj .

(A) The relation E−2 is equality on E .

(B) The relation E−1 is collinearity of distinct points of E .

(C) There is a map E1 → E , denoted by (u, v) 7→ [u, v ] such that,
if (u, v) ∈ E1 and x ∈ Ei (u) ∩ Ej(v), then [u, v ] ∈ E≤i+j(x).

(D) For each (x , y) ∈ E2, we have E≤0(x) ∩ E≤−1(y) = ∅.
(E) For each x ∈ E , the subsets E≤−1(x) and E≤0(x) are

subspaces of (E ,F).

(F) For each x ∈ E , the subset E≤1(x) is a hyperplane of (E ,F).
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Root filtration spaces

Definition

Let (E ,F) be a partial linear space. For {Ei}−2≤i≤2, a quintuple of
disjoint symmetric relations partitioning E × E , we call (E ,F) a
root filtration space with filtration {Ei}−2≤i≤2 if the properties
(A)–(F) are satisfied.
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Examples of root filtration spaces

geometry of a Lie algebra generated by extremal elements

polar spaces: E−1 = E1 = ∅
generalized hexagons: E0 = ∅
root shadow spaces of spherical buildings

disjoint commuting unions

E(M,N ) for a non-degenerate pair (M,N ) of dual projective
spaces
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Non-degenerate root filtration spaces

Definition

A root filtration space (E ,F) is called non-degenerate if it satisfies:

(G) For each x ∈ E the set E2(x) is not empty.

(H) The graph (E , E−1) is connected.

polar spaces are degenerate
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Abstract root subgroups

If L = 〈E 〉 has no sandwiches, then
{{exp(x , t) | t ∈ k} | x ∈ E (L)} is a set of abstract root
groups as defined by Timmesfeld.

If E is a set of abstract root groups, then there is a natural F
such that (E ,F) is a root filtration space.

Using k = k can identify L with Lie algebra of an algebraic
group.
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Important properties of root filtration spaces
Lemma

In a root filtration space (E ,F) the following properties hold.

(i) For each i ∈ {−2, . . . , 2} and each x ∈ E , the subset E≤i (x)
is a subspace of (E ,F).

(ii) If (u, v) ∈ E1, then [u, v ] is the unique common neighbor of
both u and v in the collinearity graph (E , E−1) of (E ,F).

(iii) If (u, v) ∈ E1, then E0(u) ∩ E2(v) ⊆ E1([u, v ]).

(iv) If (x , y) ∈ E0 and z ∈ E−1(y), then either z ∈ E≤0(x), or
z ∈ E1(x) and E−1(x , y , z) = {[x , z ]}.

(v) If (x , q) and (u, z) belong to E1 whereas u = [x , q] and
q = [u, z ], then (x , z) ∈ E2.

(vi) If P is a pentagon in the collinearity graph (E , E−1) (that is,
the induced subgraph is a pentagon), then each distinct
non-collinear pair of points of P is polar.

(vii) If (u, v) ∈ E1, then E−1(u) ∩ E0([u, v ]) ⊆ E1(v).

(viii) Let y ∈ E and l ∈ F be such that y ∈ E0(l). Then E≤−1(y , l)
is a non-empty singular subspace of (E ,F).
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Classification of non-denegerate root filtration spaces
Theorem

Let (E ,F) be a non-degenerate root filtration space.

(i) If some line in F is contained in a unique maximal singular
subspace, then one of

I. The rank of a maximal singular subspace is 1 and (E ,F) is a
root shadow space of type G2.

II. The rank of a maximal singular subspace is at least 2, there is
a point that belongs to at least 3 maximal singular subspaces,
and (E ,F) is a root shadow space of type (B|C)3,2.

III. The rank of a maximal singular subspace is at least 2, on each
point there are precisely 2 maximal singular subspaces, and
(E ,F) is isomorphic to E(M,N ) for a certain pair (M,N ) of
projective spaces in duality.

(ii) If some line in F is contained in more than one maximal
singular subspace, then E1 6= ∅ and (E ,F) is the root shadow
space of a building of type Bn, Cn (n ≥ 4), Dn (n ≥ 4), E6,
E7, E8, or F4.



Extremal elements Geometry of extremal elements Root filtration spaces Fischer spaces Conclusion

About the proof of the non-denegerate case

Cohen-Ivanyos show that if (E ,F) does not satisfy (i), it
satisfies the conditions of Kasikova-Shult.

Kasikova-Shult use results of Cohen-Cooperstein to prove that
(E ,F) is the shadow space of a building.

Cohen-Cooperstein produce all shadows of other types than
points and lines of the building to be reconstructed and apply
Tits’ local approach to spherical buildings to recognize (E ,F)
as the root shadow space of that building.
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Classification of Lie algebras with denegerate root filtration
spaces

Theorem

Let L be a Lie algebra over a field k of size at least 3 generated by
its extremal elements. Assume

(i) the sets E−1 and E1 are empty;

(ii) the graph (E , E2) is connected;

(iii) the set E0 is nonempty.

Then (E , E0) is the collinearity graph of a non-degenerate polar
space.
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About the proof of the degenerate case

use the hyperbolic lines from the Lie algebra

apply theorem by Cuypers
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Transversal cocliques in dual affine planes

A dual affine plane is a point-line space obtained from a
projective plane by removing a point and all lines containing
that point.

A transversal coclique in a dual affine plane is the set of points
forming such a removed line together with the removed point.
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Cuypers’ theorem

Theorem

Let (E ,H) be a point-line space. Let ∼ denote collinearity for
distinct points and ⊥ its complement. Suppose (E ,H) satisfies the
following six conditions.

(i) (E ,H) is a connected partial linear space that is not linear.

(ii) Each line contains at least four points.

(iii) The subspace of (E ,H) generated by any triple of points x,
y , z with x ∼ y ∼ z ⊥ x is a dual affine plane.

(iv) If p ⊥ with 2 points of a transversal coclique T , then p ⊥ T.

(v) if x, y are points with x⊥ ⊆ y⊥, then x = y.

(vi) (E ,⊥) is connected.

Then (E ,⊥) is collinearity graph of a non-degen. polar space.
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Hyperbolic lines in the degenerate case

For arbitrary degenerate root filtration spaces, hyperbolic lines
are the additional structure needed.

Cuypers’ theorem needs lines of size at least 4.

For line size 3, the Fischer spaces turn up.
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Fischer spaces

Definition

A Fischer space is a partial linear space in which each plane is
isomorphic to a dual affine plane of order two or to an affine plane
of order three.

So lines have size 3.

Buekenhout’s geometric interpretation of Fischer’s work on
3-transpositions.
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Fischer spaces from Lie algebras

Theorem

Let L = 〈E 〉 and k = Z/2Z such that

(i) the sets E−1 and E1 are empty;

(ii) the graph (E , E2) is connected;

(iii) the set E0 is nonempty.

Then (E ,L), where L is the collection of hyperbolic lines of L, is a
connected Fischer space.

hyperbolic line = E ∩ 〈x , y〉 for (x , y) hyperbolic pair.

Which Fischer spaces occur?

To be answered by reverse construction?
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Lie algebras from Fischer spaces

(E ,H): a Fischer space.

A: the vector space over Z/2Z with basis E .

∗: multiplication on A determined by

x ∗ y =

{
x + y + z if {x , y , z} ∈ H
0 otherwise

f : form on A determined by f (x , y) = 1 if x ∼ y and f (x , y) = 0
otherwise, for x , y ∈ E .

Lemma

The symplectic form f is associative: f (x , y ∗ z) = f (x ∗ y , z) for
all x , y , z ∈ A, so Rad(f ) is an ideal of A.
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The Lie algebra of a Fischer space

work by Cuypers, Gramlich, Horn, in’t panhuis, Shpectorov

Now the quotient algebra A/Rad(f ) is a Lie algebra if and
only if each affine plane of (E ,H) belongs to Rad(f ).

This Lie algebra A/Rad(L) may collapse, e.g., for F24.

F22 leads to A/Rad(f ) ∼= Lie(2E6(2)), giving a geometric
proof of a group embedding.
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Third step in the characterization of classical Lie algebras by
means of root filtration spaces has not yet been finalized:

Problem

Under which conditions (e.g. nondegeneracy) is it true that, for a
given root filtration space (E ,F), there is at most one simple Lie
algebra up to isomorphism whose root filtration space is isomorphic
to (E ,F)?

Need embeddability of the geometry in a projective space.
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Which root filtration spaces originate from a Lie algebra?

Problem

Which root filtration spaces originate from a Lie algebra?

If f is a non-degenerate symplectic form on V , then the
corresponding polar space originates from a Lie algebra.

If dim(V ) > 3 and κ is a non-degenerate quadratic form on
V , then the corresponding polar space does not originate from
a Lie algebra.
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Do all extremal elements lie on a quadric?

Problem

Suppose char(k) = 2 and L = 〈E〉. Is there a non-zero quadratic
form κ such that E is contained in the quadric defined by κ?
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Nanri — Thank you
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