On the geometry of global function fields, the Riemann-Roch
 and

finiteness properties of S-arithmetic groups

Ralf Gramlich

Darmstadt / Birmingham

29 August 2010

I

What are finiteness properties

 andhow can one determine these?

Finiteness properties

Let G be a group.

A classifying space for G is a pointed CW complex (X, x) such that

- $\pi_{1}(X, x)$ isomorphic to G and
- \tilde{X} contractible.

A group G is of type F_{n}, if there exists a classifying space for G with finite n-skeleton.

The finiteness length of a group G is

$$
\sup \left\{n \in \mathbb{N}_{O} \mid G \text { is of type } F_{n}\right\} .
$$

Fact:
Finite groups are of type F_{n} for each $n \in \mathbb{N}_{0}$, i.e. they have finiteness length ∞.

Question: What finiteness properties does $\operatorname{SL}_{n}\left(\mathbb{F}_{q}[t]\right)$ have?

Cayley graphs

Let G be a group with set of generators Z and set of relations R, so that

$$
G=\langle Z \mid R\rangle
$$

is a presentation of G.

Let $\operatorname{Cay}(G, Z)$ be the Cayley graph of G with

- vertex set G and
- edge set $\{(g, g z) \mid g \in G, z \in Z\}$.

$$
\text { Let } X^{1}:=G \backslash \operatorname{Cay}(G, Z) \text {. }
$$

For each $r \in R$ let Δ_{r} be a 2-disk whose boundary is divided in $l(r)$ segments which are labelled by the word r (over Z).

Definine X^{2} by glueing $\left(\Delta_{r}\right)_{r \in R}$ into X^{1} according to the labels.

Observation: $\pi_{1}\left(X^{2}\right) \cong G$.
Construct a classifying space X for G be glueing higher-dimensional cells into X^{2} as necessary.

Finitely generated and
 finitely presented groups

We conclude:

- Each group G is of type F_{0}.
- If G finitely generated, then it is of type F_{1}.
- If G finitely presented, then it is of type F_{2}.

Conversely, let

- X be a classifying space for G,
- $x \in X$ a 0-cell and
- T a maximal subtree of the graph X^{1}.

Then $G \cong \pi_{1}(X, x) \cong \pi_{1}(X / T, \bar{x})$.
As $\widetilde{X / T}$ contractible, also X / T is a classifying space for G.

Conclusion:

For a group G the following assertions are equivalent:
finitely generated \Longleftrightarrow type F_{1},
finitely presented \Longleftrightarrow type F_{2}.

A universal tool:
 Brown's criterion

Theorem 1 (Brown)

Let $n \in \mathbb{N}$ and X a CW complex with $\pi_{k}(X)=$ 0 for $0 \leq k \leq n-1$.

Let 「 be a group that acts cellularly and rigidly on X, such that

- there exists a Г-cocompact 「-filtration

$$
X=\bigcup_{i \in \mathbb{N}} X_{i}
$$

and

- the stabilizer of each i-cell is of type F_{n-i}.

Then the group Γ is of type F_{n} if and only if for each $k \leq n-1$ the directed system

$$
\pi_{k}\left(X_{j}\right) \xrightarrow{j<j^{\prime}} \pi_{k}\left(X_{j^{\prime}}\right)
$$

is essentially trivial.

Goal: Construct a filtration for $\operatorname{SL}_{n}\left(\mathbb{F}_{q}[t]\right)$ on the Bruhat-Tits building of $S L_{n}\left(\mathbb{F}_{q}\left(\left(\frac{1}{t}\right)\right)\right)$.

II

The theorem of Riemann-Roch

and

the geometry of numbers

Non-singular projective curves over \mathbb{F}_{q}

Let k be a perfect field (i.e. irreducible polynomials have zeros of multiplicity 1).

A projective variety over k of dimension 1 is called a projective curve over k.

A projective curve Y is non-singular in $P \in Y$, if the ring \mathcal{O}_{P} of functions that are regular in P is a discrete valuation ring.

A curve is non-singular, if it is non-singular in each of its points.

Example: The projective line

$$
\mathbb{P}_{1}(\mathbb{C}) \cong \mathbb{C} \cup\{\infty\}
$$

is a non-singular projective curve.
For $P \in \mathbb{C}$ one has

$$
\begin{aligned}
\mathcal{O}_{P} & =\left\{\left.\frac{a}{b} \in \mathbb{C}(t) \right\rvert\, b(P) \neq 0\right\}, \\
\mathfrak{m} & =\left\{\left.\frac{a}{b} \in \mathcal{O}_{P} \right\rvert\, a(P)=0\right\} . \\
\nu_{P}(x) & :=\sup \left\{i \in \mathbb{N} \cup\{0\} \mid x \in \mathfrak{m}^{i}\right\} .
\end{aligned}
$$

$\nu_{P}(x)$ counts the multiplicity of the zero P.

Curves and global function fields

Galois descent to a real closed subfield via the action of an involution on $\mathbb{P}_{1}(\mathbb{C})$:

Closed points \leftrightarrow orbits on $\mathbb{P}_{1}(\mathbb{C})$

Fixed points \leftrightarrow irr. linear polynomials
Non-fixed points \leftrightarrow irr. quadratic polynomials

Theorem 2

Let Y / \mathbb{F}_{q} be a non-singular projective curve.

Then there exists a bijection between

- the set Y° of \mathbb{F}_{q}-closed points of Y and
- the set of places of the field $\mathbb{F}_{q}(Y)$ of $\mathbb{F}_{q^{-}}$ rational functions of Y.

The degree of an \mathbb{F}_{q}-closed point equals the degree of the corresponding place.
$\mathbb{F}_{q}(Y)$ is called a global function field.

Weil divisors

Let

- Y / \mathbb{F}_{q} a non-singular projective curve,
- $K:=\mathbb{F}_{q}(Y)$.

The Weil divisor group $\operatorname{Div}(Y)$ is the free abelian group over Y°.

An element

$$
D=\sum_{P \in Y^{\circ}} n_{P} P \in \operatorname{Div}(Y)
$$

is effective ($D \geq 0$), if $n_{P} \geq 0$ for all $P \in Y^{\circ}$.
The degree of D is

$$
\operatorname{deg}(D):=\sum_{P \in Y^{\circ}} n_{P} \operatorname{deg} P .
$$

Define $\nu_{P}(D):=n_{P}$.
For $0 \neq x \in K$ define the divisor of x as

$$
\operatorname{div}(x):=\sum_{P \in Y^{\circ}} \nu_{P}(x) P .
$$

Riemann-Roch spaces and adèles

The Riemann-Roch space of a divisor D of Y / \mathbb{F}_{q} is defined as $L(D):=\{0 \neq x \in K \mid \operatorname{div}(x)+D \geq 0\} \cup\{0\}$.

Example: $L(0)=\mathbb{F}_{q}$.

Define the ring of adèles

$$
\begin{aligned}
\mathbb{A}_{K}:= & \left\{\left(x_{P}\right)_{P \in Y^{\circ}} \in \prod_{P \in Y^{\circ}} K_{P} \mid\right. \\
& \left.x_{P} \in \widehat{\mathcal{O}}_{P} \text { for almost all } P \in Y^{\circ}\right\}
\end{aligned}
$$

where

$$
\widehat{\mathcal{O}_{P}}:=\lim \mathcal{O}_{P} / \mathfrak{m}^{i} \quad \text { and } \quad K_{P}=Q\left(\widehat{\mathcal{O}_{P}}\right) .
$$

For a divisor D define

$$
\begin{aligned}
\mathbb{A}_{K}(D):= & \left\{x \in \mathbb{A}_{K} \mid\right. \\
& \left.\nu_{P}(x)+\nu_{P}(D) \geq 0 \text { for all } P \in Y^{\circ}\right\} .
\end{aligned}
$$

One has $K \cap \mathbb{A}_{K}(D)=L(D)$.

The Riemann-Roch theorem

Let Y / \mathbb{F}_{q} be a non-singular projective curve.
Its genus is

$$
g:=\operatorname{dim}_{\mathbb{F}_{q}}\left(\mathbb{A}_{K} / \mathbb{A}_{K}(0)+K\right) .
$$

Theorem 3 (Riemann, Roch)

For each Weil divisor D one has

$$
\begin{aligned}
& \operatorname{dim}_{\mathbb{F}_{q}}(L(D))-\operatorname{dim}_{\mathbb{F}_{q}}\left(\mathbb{A}_{K} / \mathbb{A}_{K}(D)+K\right) \\
= & \operatorname{deg}(D)+1-g .
\end{aligned}
$$

Example $D=0$:

$$
\begin{array}{r}
\operatorname{deg}(0)=0 \\
\operatorname{dim}_{\mathbb{F}_{q}}(L(0))=\operatorname{dim}_{\mathbb{F}_{q}}\left(\mathbb{F}_{q}\right)=1 \\
\operatorname{dim}_{\mathbb{F}_{q}}\left(\mathbb{A}_{K} / \mathbb{A}_{K}(0)+K\right) \stackrel{\text { def }}{=} g
\end{array}
$$

The ring of adèles as locally compact topological space

The subring

$$
\begin{aligned}
\widehat{\mathcal{O}}_{K}:= & \left\{\left(x_{P}\right)_{P \in Y^{\circ}} \in \prod_{P \in Y^{\circ}} K_{P} \mid\right. \\
& \left.x_{P} \in \widehat{\mathcal{O}}_{P} \text { for each } P \in Y^{\circ}\right\} \\
= & \mathbb{A}_{K}(0)
\end{aligned}
$$

is a compact neighbourhood of 0 .

Define

$$
\begin{aligned}
|\cdot|: \mathbb{A}_{K} & \rightarrow \mathbb{R} \\
x & \mapsto \prod_{P \in Y^{\circ}}|x|_{P} \\
& =\prod_{P \in Y^{\circ}}\left(q^{\operatorname{deg}(P)}\right)^{-\nu_{P}(x)} .
\end{aligned}
$$

Let ω be a one-dimensional volume form defined over K.

Serre's formula

Observation 4 (Serre)

Let

- G a unimodular lokally compact group,
- 「 a discrete subgroup,
- H a compacte open subgroup and
- μ a Haar measure.

Assume that $H \backslash G / \Gamma$ is countable.

Then

$$
\begin{aligned}
\int_{G / \Gamma} d \mu & =\sum_{x \in(H \backslash G) / \Gamma}\left(\int_{G_{x} / \Gamma_{x}} d \mu\right) \\
& =\sum_{x \in H \backslash G / \Gamma} \frac{\int_{G_{x}} d \mu}{\left|\Gamma_{x}\right|} \\
& =\sum_{x \in H \backslash G / \Gamma} \frac{\int_{H} d \mu}{\left|\Gamma_{x}\right|} \\
& =\int_{H} d \mu \sum_{x \in H \backslash G / \Gamma} \frac{1}{\left|\Gamma_{x}\right|} .
\end{aligned}
$$

The geometry of numbers I

Proposition 5 (Weil)

One has

$$
\int_{\mathbb{A}_{K} / K} \omega_{\mathbb{A}_{K}}=q^{g-1} .
$$

Proof. For the compact open subgroup $\mathbb{A}_{K}(0)$ of \mathbb{A}_{K} Serre's formula implies

$$
\begin{aligned}
& \int_{\mathbb{A}_{K} / K} \omega_{\mathbb{A}_{K}} \\
\stackrel{4}{=} & \int_{\mathbb{A}_{K}(0)} \omega_{\mathbb{A}_{K}} \sum_{\mathbb{A}_{K}(0) \backslash \mathbb{A}_{K} / K} \frac{1}{\left|K \cap \mathbb{A}_{K}(0)\right|} \\
= & \frac{\left|\mathbb{A}_{K} / \mathbb{A}_{K}(0)+K\right|}{|L(0)|} \int_{\mathbb{A}_{K}(0)} \omega_{\mathbb{A}_{K}} .
\end{aligned}
$$

Since

$$
\int_{\mathbb{A}_{K}(0)} \omega_{\mathbb{A}_{K}}=\int_{\widehat{\mathcal{O}}_{K}} \omega_{\mathbb{A}_{K}}=1
$$

by Riemann-Roch (or rather its underlying definitions)

$$
\int_{\mathbb{A}_{K} / K} \omega_{\mathbb{A}_{K}}=q^{g-1} .
$$

The geometry of numbers II

Proposition 6 (Weil)

One has

$$
\int_{\mathbb{A}_{K}(D)} \omega_{\mathbb{A}_{K}}=q^{\operatorname{deg}(D)} .
$$

Proof. One computes

$$
\begin{aligned}
q^{g-1} & \stackrel{5}{=} \int_{\mathbb{A}_{K} / K} \omega_{\mathbb{A}_{K}} \\
& \stackrel{4}{=} \frac{\left|\mathbb{A}_{K}(D) \backslash \mathbb{A}_{K} / K\right|}{\left|K \cap \mathbb{A}_{K}(D)\right|} \int_{\mathbb{A}_{K}(D)} \omega_{\mathbb{A}_{K}} \\
& =\frac{\left|\mathbb{A}_{K} / \mathbb{A}_{K}(D)+K\right|}{|L(D)|} \int_{\mathbb{A}_{K}(D)} \omega_{\mathbb{A}_{K}} .
\end{aligned}
$$

Riemann-Roch implies

$$
\int_{\mathbb{A}_{K}(D)} \omega_{\mathbb{A}_{K}}=q^{\operatorname{deg}(D)} .
$$

III

Harder's reduction theory

Filtrations of unipotent radicals

Proposition 7 (Demazure, Grothendieck)

Let

- Y / \mathbb{F}_{q} a non-singular projective curve,
- G / Y a reductive group Y-scheme and
- P / Y a parabolic subgroup of G / Y.

Then there exists a filtration

$$
R_{u}(P)=U_{0} \supset U_{1} \supset \cdots \supset U_{k}=\{e\}
$$

with U_{i} / U_{i+1} vector bundles over Y.

More precisely:

$$
\begin{aligned}
U_{i} & =\prod_{\alpha \in \Delta_{P}^{+}, l(\alpha)>i} P_{\alpha} \\
U_{i} / U_{i+1} & \cong \prod_{\alpha \in \Delta_{P}^{+}, l(\alpha)=i+1} P_{\alpha}
\end{aligned}
$$

where P_{α} is the vector bundle over Y corresponding to the root space \mathfrak{g}^{α}.

Harder's numerical invariants I

Let

- B / Y a minimal parabolic subgroup of G and - $\left(P_{i} / Y\right)_{i}$ the maximal parabolic subgroups of G containing B.

Define

$$
p_{i}(B):=p\left(P_{i}\right)=\sum_{\alpha \in \Delta_{P_{i}}^{+}} \operatorname{deg}\left(\mathcal{L}\left(P_{\alpha}\right)\right)
$$

where $\mathcal{L}\left(P_{\alpha}\right)$ is the divisor/locally free $\mathcal{O}_{Y^{-}}$ module corresponding to P_{α}.

Define moreover

$$
\chi_{P_{i}}:=\sum_{\alpha \in \Delta_{P_{i}}^{+}} \operatorname{dim}\left(P_{\alpha}\right) \alpha
$$

Harder's numerical invariants II

Theorem 8 (Harder)

Let

- G / Y a reductive group Y-scheme,
- P / Y a max. parabolic subgroup,
- $\mathfrak{K}:=G\left(\widehat{\mathcal{O}}_{K}\right)$ and
- ω a volume form on $R_{u}(P)$ defined over K.

Then

$$
\int_{R_{u}\left(P\left(\mathbb{A}_{K}\right)\right) \cap \mathfrak{K}} \omega_{\mathbb{A}_{K}}=q^{p(P)} .
$$

Proof. One computes

$$
\begin{aligned}
\int_{R_{u}\left(P\left(\mathbb{A}_{K}\right)\right) \cap \mathfrak{\Re}} \omega_{\mathbb{A}_{K}} & \stackrel{7}{=} \prod_{\alpha \in \Delta_{P}^{+}}\left(\int_{P_{\alpha}\left(\mathbb{A}_{K}\right) \cap \widehat{\mathcal{O}}_{K}} \omega_{\mathbb{A}_{K}}\right) \\
& \stackrel{\sigma}{=} \prod_{\alpha \in \Delta_{P}^{+}} q^{\operatorname{deg}\left(\mathcal{L}\left(P_{\alpha}\right)\right)} \\
& \stackrel{\text { def }}{=} q^{p(P)} .
\end{aligned}
$$

A transformation formula

Theorem 9 (Harder)

For each $x \in P\left(\mathbb{A}_{K}\right)$
$\int_{R_{u}\left(P\left(\mathbb{A}_{K}\right)\right) \cap \mathfrak{K}} \omega_{\mathbb{A}_{K}}=\left|\chi_{P}(x)\right| \int_{R_{u}\left(P\left(\mathbb{A}_{K}\right)\right) \cap^{x} \mathfrak{K}} \omega_{\mathbb{A}_{K}}$.

Proof. The absolute value of the determinant of the derivative of conjugation by x

$$
\left|\chi_{P}(\cdot)\right|: P\left(\mathbb{A}_{K}\right) \quad \xrightarrow{\text { ad }} \quad \mathrm{GL}\left(\operatorname{Lie}\left(R_{u}\left(P\left(\mathbb{A}_{K}\right)\right)\right)\right)
$$

$\xrightarrow{\text { det }} \mathrm{GL}\left(\bigwedge^{d} \operatorname{Lie}\left(R_{u}\left(P\left(\mathbb{A}_{K}\right)\right)\right)\right)$
$\xrightarrow{|\cdot|} \mathbb{R}$
$x \mapsto\left|\chi_{P}(x)\right|$
measure the ration of the volumes of

$$
R_{u}(P(\mathbb{A})) \cap \mathfrak{K} \quad \text { and } \quad R_{u}(P(\mathbb{A})) \cap^{x} \mathfrak{K} .
$$

A Morse function

Let

- $\emptyset \neq S \subset Y^{\circ}$ finite,
- X product of the affine buildings of $G\left(K_{P}\right)_{P \in S}$,
- $\mathfrak{K}:=G\left(\widehat{\mathcal{O}}_{K}\right)$.

For $g \in \prod_{P \in S} G\left(K_{P}\right)$ and $x=\operatorname{Fix}_{X}\left({ }^{g \mathfrak{K}}\right)$ define

$$
\begin{aligned}
p_{i}(B, x) & :=\log _{q}\left(\int_{R_{u}\left(P_{i}\left(\mathbb{A}_{K}\right)\right) \cap_{\mathfrak{K}}} \omega_{\mathbb{A}_{K}}\right) \\
& \stackrel{8,9}{=} p_{i}(B)+\sum_{P \in S} \operatorname{deg}(P) \nu_{P}(g) .
\end{aligned}
$$

This function

- is affine linear on each appartment whose boundary at infinity contains P_{i},
- and can therefore be extended to all of X.

Then

$$
X^{p}(c)=\left\{x \in X_{S} \mid p_{i}(B, x) \leq c \text { for } B \text { nice }\right\}
$$

yields a filtration which is suitable for studying finiteness properties of the S-arithmetic group $G\left(\mathcal{O}_{S}\right)$.

Study these via

- algebraic geometry,
- CAT (0) theory,
- building theory.

Applications

Theorem 10 (Bux, Wortman 2007)

Let G be an absolutely almost simple $\mathbb{F}_{q}(t)$ isotropic algebraic $\mathbb{F}_{q}(t)$-group with $\mathrm{rk}_{\mathbb{F}_{q}(t)} G=$ 1.

The finiteness length of an S-arithmetic subgroup of $G\left(F_{q}(t)\right)$ is

$$
\left(\sum_{P \in S} \mathrm{rk}_{\mathbb{F}_{q}(t)_{P}} G\right)-1 .
$$

Theorem 11 (Bux, G., Witzel 2009/10)

Let G be an absolutely almost simple $\mathbb{F}_{q^{-}}$ group of rank $n \geq 1$. Then

- $G\left(\mathbb{F}_{q}[t]\right)$ is of type F_{n-1} but not F_{n} and
- $G\left(\mathbb{F}_{q}\left[t, \frac{1}{t}\right]\right)$ is of type $F_{2 n-1}$ but not $F_{2 n}$.

Conjecture 12

The finiteness length of an S-arithmetic subgroup of $G\left(F_{q}(t)\right)$ is always

$$
\left(\sum_{P \in S} \mathrm{rk}_{\mathbb{F}_{q}(t)_{P}} G\right)-1 .
$$

