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WwWhat are
finiteness properties

and

how can one determine
these?



Finiteness properties
Let G be a group.

A classifying space for G is a pointed CW
complex (X,xz) such that

e m1(X,x) isomorphic to G and

e X contractible.

A group G is of type Fj, if there exists a
classifying space for G with finite n-skeleton.
T he finiteness length of a group G is

sup{n € Ng | G is of type Fp}.

Fact:
Finite groups are of type F;, for each n € Ny,
i.e. they have finiteness length oo.

Question: What finiteness properties does
SLn(Fy[t]) have?



Cayley graphs

Let G be a group with set of generators Z
and set of relations R, so that

G=(Z|R)
IS a presentation of (.
Let Cay(G, Z) be the Cayley graph of G with

e vertex set GG and
e edge set {(g9,92) | g€ G,z € Z}.

Let X! := G\Cay(G, 2).

For each r € R let A, be a 2-disk whose
boundary is divided in I(r) segments which
are labelled by the word r (over 7).

Definine X2 by glueing (Ar),cp into X1 ac-
cording to the labels.

Observation: 7 (X?) £ G.

Construct a classifying space X for G be glue-
ing higher-dimensional cells into X2 as nec-
essary.



Finitely generated
and
finitely presented groups

We conclude:

e Each group G is of type Fp.

e If G finitely generated, then it is of type Fj.
o If G finitely presented, then it is of type F5.

Conversely, let

e X be a classifying space for G,

e r € X a O-cell and

e T a maximal subtree of the graph X1,

Then G =m(X,z) = 7 (X/T,%Z).

AS )E/VT contractible, also X/T is a classifying
space for G.

Conclusion:
For a group G the following assertions are
equivalent:

finitely generated <= type Fjy,
finitely presented <= type F5.



A universal tool:
Brown’s criterion

Theorem 1 (Brown)

Letn € Nand X a CW complex with m;,(X) =
Ofor0<k<n-—1.

Let ' be a group that acts cellularly and
rigidly on X, such that
e there exists a [ -cocompact I -filtration

X =J X

and
e the stabilizer of each i-cell is of type F,,_;.

Then the group I is of type F;, if and only if
for each Kk <n — 1 the directed system

-/

7<J
Wk(Xj) - Wk(Xj/)

is essentially trivial.

Goal: Construct a filtration for SL,(Fg4[t]) on
the Bruhat—Tits building of SLn(Fe((1))).
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T he theorem of
Riemann—RocCh

and
the geometry of numbers



Non-singular projective curves over [

Let k£ be a perfect field (i.e. irreducible poly-
nomials have zeros of multiplicity 1).

A projective variety over k of dimension 1 is
called a projective curve over k.

A projective curve Y is non-singular in P € Y,
if the ring Op of functions that are regular in
P is a discrete valuation ring.

A curve is non-singular, if it is non-singular
in each of its points.

Example: The projective line
P1(C) £ C U {0}
IS @ non-singular projective curve.

For P € C one has
op = {Tec® |bnp)#0},

m = {%EOP|G(P):O}.
vp(z) = sup{i e NU{0}|zecm'}.

vp(x) counts the multiplicity of the zero P.



Curves and global function fields

Galois descent to a real closed subfield via
the action of an involution on P (C):

Closed points < orbits on P1(C)

Fixed points < irr. linear polynomials
Non-fixed points « irr. quadratic polynomials

Theorem 2
Let Y/F, be a non-singular projective curve.

T hen there exists a bjjection between

e the set Y° of Fy4-closed points of Y and

e the set of places of the field Fy(Y) of Fy-
rational functions of' Y.

The degree of an Fq-closed point equals the
degree of the corresponding place.

Fq,(Y) is called a global function field.



Well divisors

Let
e Y/IF;, a non-singular projective curve,

The Weil divisor group Div(Y) is the free
abelian group over Y°.

An element

D = Z np P € Div(Y)
Pey®°

is effective (D > 0), if np >0 for all P € Y°.

The degree of D is

deg(D) := ) np degP.
Peyo

Define l/p(D) = np.

For O # x € K define the divisor of = as

div(z) == > wvp(x)P.

Pey®°



Riemann—Roch spaces and adeles

The Riemann—Roch space of a divisor D of
Y/F, is defined as

L(D) := {0 # z € K | div(z) + D > 0} U {0}.

Example: L(0) = Fy.

Define the ring of adeles

Ag = {(zp)pey-€ || Kp|
Pey®©

Tp € 5p for almost all P € Y° }

where

(/9\p::|i<£n(9p/mi and KPZQ((/Q\p)

For a divisor D define

Ag(D) = {z€hg]
vp(x) +vp(D) >0 for all PeY°}.

One has KNAg(D) = L(D).



The Riemann—Roch theorem

Let Y/F, be a non-singular projective curve.
Its genus is

g :=dimy (Ag/Ag(0) + K).

Theorem 3 (Riemann, Roch)
For each Weil divisor D one has

dimp, (L(D)) — dimp, (Ag/Ag(D) + K)
= deg(D)+1-g.

Example D = 0O:

deg(0)
dimg, (L(0)) = dimg_(Fg)

dimp (Ag/AK(0) + K) T g

1



The ring of adeles as locally compact
topological space

The subring
Oxg = {(zp)pey-€ ] Kp|
Pey?°
xp € Op for each PeY®° }

= Ag(0)

IS @ compact neighbourhood of O.

Define

II I=lp

PeYy©°

= I (qdeotm) )
PeY©°

8]
l

Let w be a one-dimensional volume form de-
fined over K.



Serre’s formula

Observation 4 (Serre)

Let

e (G a unimodular lokally compact group,
e [ a discrete subgroup,

e H a compacte open subgroup and

e 1, A Haar measure.

Assume that H\G/I' is countable.

Then
du = Z ( d,u)
Jo 2e(H\G)/T b,
Ja, dp
= X
xreH\G/T T
Jm dp
R o
xreH\G/TI T
1
= /Hd,u Z ||_;C|

xreH\G/T



The geometry of numbers 1

Proposition 5 (Weil)

One has
= g_]'.
S ae i =3
Proof. For the compact open subgroup
A (0) of A Serre’'s formula implies
/AK/KwAK
4 / 1
Ak (0) A (O\Ax /K |K M AK(O>|
_ Ar/AK(0) + K| o
|L(0)| Ag(0) 7K
Since

w = [ . w =1

/AK(O) Ax Ok Ax

by Riemann—Roch (or rather its underlying
definitions)

— g—1
w = .
S ae i =3



The geometry of numbers II

Proposition 6 (Weil)
One has

— ,deg(D)
/AK(D) “hx T '

Proof. One computes
-1 3
¢ " = /AK/KwAK
4 |Ag(D)\Ak/K y
T KNAgD)] Jagm) P
A /A (D) + K| g
|L(D)| Ak (D)

AK'

Riemann—Roch implies

— ,deg(D)
/AK<D> “hie T4 |
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Harder’s reduction theory



Filtrations of unipotent radicals

Proposition 7 (Demazure, Grothendieck)
Let

e Y/F, a non-singular projective curve,

e G/Y a reductive group Y-scheme and

e P/Y a parabolic subgroup of G/Y .

T hen there exists a filtration

RyW(P)=UgDU; D---DU, = {e}

with U;/U;41 vector bundles over Y .

More precisely:

Uz' — H P
ac AL I(a)>i
Ui/Uiy1 = 11 Py
aGAE';,l(a)zi—l—l

where P, is the vector bundle over Y corre-
sponding to the root space g“.



Harder’s numerical invariants 1

Let

e B/Y a minimal parabolic subgroup of G and
e (P;/Y); the maximal parabolic subgroups of
(G containing B.

Define

pi(B) :=p(P) = ) deg(L(Pn))
aEA}E

where L(P,) is the divisor/locally free Oy-
module corresponding to F,.

Define moreover

Xp; i= > dim(Pa)a.
aGAE



Harder’s numerical invariants II

Theorem 8 (Harder)

Let

e G/Y a reductive group Y -scheme,

e P/Y a max. parabolic subgroup,

e R:=G(Ok) and

e w a volume form on R, (P) defined over K.

T hen

— p(P)
/Ruw(AK))mﬁwAK T

Proof. One computes

A
/RU(P(AK))ﬂﬁwAK o H+ </f)oz(AK)ﬂé)\K WAK>
aEAL

<3 I q9e9(L(Fa))
ozEA}L_
def qp(p).



A transformation formula

Theorem 9 (Harder)
For each x € P(Ag)

= |XP(33)|/

Ru(P(A)) ek AR

/Ru<P<AK>>mﬁ “AK

Proof. The absolute value of the determi-
nant of the derivative of conjugation by x

xp()] 1 P(Ag) 28 GL (Lie(Ru(P(AK))))

d
det <1 (/\ Lie(Ru(P(AK))))
g

r — |xp(z)

measure the ration of the volumes of

Ru(P(A))NKR and Ry (P(A))NTR.



A Morse function

Let

e ) = S C Y° finite,

e X product of the affine buildings of G(Kp) peg,
o R:=G(Ok).

For g € [Ipeg G(Kp) and x = Fixx (9R) define

pi(B,z) = log, (/Ru(Pi(AK))mgﬁwAK>

8,9 pi(B) + Y deg(P)vp(g).
pes

This function

e is affine linear on each appartment whose
boundary at infinity contains F;,

e and can therefore be extended to all of X.

Then

XP(c) ={zx € Xg|p;(B,z) <c for B nice}

yields a filtration which is suitable for study-
ing finiteness properties of the S-arithmetic
group G(QOg).

Study these via

e algebraic geometry,
e CAT(0) theory,

e building theory.



Applications

Theorem 10 (Bux, Wortman 2007)

Let G be an absolutely almost simple Fy(t)-
isotropic algebraic Fq(t)-group with rqu(t)G =
1.

The finiteness length of an S-arithmetic sub-
group of G(Fy(t)) is

(Z rqu(t)pG) — 1.

PesS

Theorem 11 (Bux, G., Witzel 2009/10)

Let G be an absolutely almost simple F,-
group of rank n > 1. Then

o G(IFy[t]) is of type F,,_1 but not F, and

o G(Fqylt,1]) is of type Fa,_1 but not Fa,.

Conjecture 12

T he finiteness length of an S-arithmetic sub-
group of G(Fy(t)) is always

(Z rqu(t)PG) — 1.

PesS



