On the geometry of global function fields, the Riemann–Roch theorem and finiteness properties of S-arithmetic groups

Ralf Gramlich

Darmstadt / Birmingham

29 August 2010

Ι

What are finiteness properties and how can one determine these?

Finiteness properties

Let G be a group.

A classifying space for G is a pointed CW complex (X, x) such that

- $\pi_1(X, x)$ isomorphic to G and
- \tilde{X} contractible.

A group G is of type F_n , if there exists a classifying space for G with finite n-skeleton.

The finiteness length of a group G is

 $\sup\{n \in \mathbb{N}_0 \mid G \text{ is of type } F_n\}.$

Fact:

Finite groups are of type F_n for each $n \in \mathbb{N}_0$, i.e. they have finiteness length ∞ .

Question: What finiteness properties does $SL_n(\mathbb{F}_q[t])$ have?

Cayley graphs

Let G be a group with set of generators Z and set of relations R, so that

$$G = \langle Z \mid R \rangle$$

is a presentation of G.

```
Let Cay(G, Z) be the Cayley graph of G with
```

- vertex set G and
- edge set $\{(g,gz) \mid g \in G, z \in Z\}.$

Let $X^1 := G \setminus Cay(G, Z)$.

For each $r \in R$ let Δ_r be a 2-disk whose boundary is divided in l(r) segments which are labelled by the word r (over Z).

Definine X^2 by glueing $(\Delta_r)_{r \in R}$ into X^1 according to the labels.

Observation: $\pi_1(X^2) \cong G$.

Construct a classifying space X for G be glueing higher-dimensional cells into X^2 as necessary.

Finitely generated and finitely presented groups

We conclude:

- Each group G is of type F_0 .
- If G finitely generated, then it is of type F_1 .
- If G finitely presented, then it is of type F_2 .

Conversely, let

- X be a classifying space for G,
- $x \in X$ a 0-cell and
- T a maximal subtree of the graph X^1 .

Then $G \cong \pi_1(X, x) \cong \pi_1(X/T, \overline{x})$.

As $\widetilde{X/T}$ contractible, also X/T is a classifying space for G.

Conclusion:

For a group G the following assertions are equivalent:

finitely generated \iff type F_1 , finitely presented \iff type F_2 .

A universal tool: Brown's criterion

Theorem 1 (Brown)

Let $n \in \mathbb{N}$ and X a CW complex with $\pi_k(X) = 0$ for $0 \le k \le n - 1$.

Let Γ be a group that acts cellularly and rigidly on X, such that

• there exists a Γ-cocompact Γ-filtration

$$X = \bigcup_{i \in \mathbb{N}} X_i$$

and

• the stabilizer of each *i*-cell is of type F_{n-i} .

Then the group Γ is of type F_n if and only if for each $k \leq n-1$ the directed system

$$\pi_k(X_j) \xrightarrow{j < j'} \pi_k(X_{j'})$$

is essentially trivial.

Goal: Construct a filtration for $SL_n(\mathbb{F}_q[t])$ on the Bruhat–Tits building of $SL_n(\mathbb{F}_q((\frac{1}{t})))$.

Π

The theorem of Riemann–Roch

and

the geometry of numbers

Non-singular projective curves over \mathbb{F}_q

Let k be a perfect field (i.e. irreducible polynomials have zeros of multiplicity 1).

A projective variety over k of dimension 1 is called a projective curve over k.

A projective curve Y is non-singular in $P \in Y$, if the ring \mathcal{O}_P of functions that are regular in P is a discrete valuation ring.

A curve is non-singular, if it is non-singular in each of its points.

Example: The projective line

$$\mathbb{P}_1(\mathbb{C}) \cong \mathbb{C} \cup \{\infty\}$$

is a non-singular projective curve.

For $P\in \mathbb{C}$ one has

$$\mathcal{O}_P = \left\{ \frac{a}{b} \in \mathbb{C}(t) \mid b(P) \neq 0 \right\},$$

$$\mathfrak{m} = \left\{ \frac{a}{b} \in \mathcal{O}_P \mid a(P) = 0 \right\}.$$

$$\nu_P(x) := \sup \left\{ i \in \mathbb{N} \cup \{0\} \mid x \in \mathfrak{m}^i \right\}.$$

 $\nu_P(x)$ counts the multiplicity of the zero P.

Curves and global function fields

Galois descent to a real closed subfield via the action of an involution on $\mathbb{P}_1(\mathbb{C})$:

Closed points \leftrightarrow orbits on $\mathbb{P}_1(\mathbb{C})$

Fixed points \leftrightarrow irr. linear polynomials Non-fixed points \leftrightarrow irr. quadratic polynomials

Theorem 2

Let Y/\mathbb{F}_q be a non-singular projective curve.

Then there exists a bijection between

• the set Y° of \mathbb{F}_q -closed points of Y and

• the set of places of the field $\mathbb{F}_q(Y)$ of \mathbb{F}_q rational functions of Y.

The degree of an \mathbb{F}_q -closed point equals the degree of the corresponding place.

 $\mathbb{F}_q(Y)$ is called a global function field.

Weil divisors

Let

- Y/\mathbb{F}_q a non-singular projective curve,
- $K := \mathbb{F}_q(Y).$

The Weil divisor group Div(Y) is the free abelian group over Y° .

An element

$$D = \sum_{P \in Y^{\circ}} n_P \ P \in \mathsf{Div}(Y)$$

is effective $(D \ge 0)$, if $n_P \ge 0$ for all $P \in Y^{\circ}$.

The degree of D is

$$\deg(D) := \sum_{P \in Y^{\circ}} n_P \deg P.$$

Define $\nu_P(D) := n_P$.

For $0 \neq x \in K$ define the divisor of x as

$$\operatorname{div}(x) := \sum_{P \in Y^{\circ}} \nu_P(x) P.$$

Riemann–Roch spaces and adèles

The Riemann–Roch space of a divisor D of Y/\mathbb{F}_q is defined as

 $L(D) := \{ 0 \neq x \in K \mid div(x) + D \ge 0 \} \cup \{ 0 \}.$

Example: $L(0) = \mathbb{F}_q$.

Define the ring of adèles

$$\mathbb{A}_K := \{ (x_P)_{P \in Y^{\circ}} \in \prod_{P \in Y^{\circ}} K_P \mid \\ x_P \in \widehat{\mathcal{O}}_P \text{ for almost all } P \in Y^{\circ} \}$$

where

$$\widehat{\mathcal{O}}_P := \lim_{\leftarrow} \mathcal{O}_P / \mathfrak{m}^i$$
 and $K_P = Q(\widehat{\mathcal{O}}_P).$

For a divisor D define

$$\mathbb{A}_K(D) := \{ x \in \mathbb{A}_K \mid \\ \nu_P(x) + \nu_P(D) \ge 0 \text{ for all } P \in Y^\circ \}.$$

One has $K \cap \mathbb{A}_K(D) = L(D)$.

The Riemann–Roch theorem

Let Y/\mathbb{F}_q be a non-singular projective curve. Its genus is

$$g := \dim_{\mathbb{F}_q}(\mathbb{A}_K/\mathbb{A}_K(0) + K).$$

Theorem 3 (Riemann, Roch) For each Weil divisor D one has

 $\dim_{\mathbb{F}_q}(L(D)) - \dim_{\mathbb{F}_q}(\mathbb{A}_K/\mathbb{A}_K(D) + K)$ = deg(D) + 1 - g.

Example D = 0:

- $\deg(0) = 0$
- $\dim_{\mathbb{F}_q}(L(0)) = \dim_{\mathbb{F}_q}(\mathbb{F}_q) = 1$
 - $\dim_{\mathbb{F}_q}(\mathbb{A}_K/\mathbb{A}_K(0)+K) \stackrel{\text{def}}{=} g$

The ring of adèles as locally compact topological space

The subring

$$\widehat{\mathcal{O}}_{K} := \{ (x_{P})_{P \in Y^{\circ}} \in \prod_{P \in Y^{\circ}} K_{P} \mid \\ x_{P} \in \widehat{\mathcal{O}}_{P} \text{ for each } P \in Y^{\circ} \} \\ = \mathbb{A}_{K}(0)$$

is a compact neighbourhood of 0.

Define

$$\begin{aligned} |\cdot| : \mathbb{A}_K &\to \mathbb{R} \\ x &\mapsto \prod_{P \in Y^\circ} |x|_P \\ &= \prod_{P \in Y^\circ} \left(q^{\deg(P)} \right)^{-\nu_P(x)} \end{aligned}$$

•

Let ω be a one-dimensional volume form defined over K.

Serre's formula

Observation 4 (Serre)

Let

- G a unimodular lokally compact group,
- Γ a discrete subgroup,
- $\bullet~H$ a compacte open subgroup and
- μ a Haar measure.

Assume that $H \setminus G / \Gamma$ is countable.

Then

$$\int_{G/\Gamma} d\mu = \sum_{x \in (H \setminus G)/\Gamma} \left(\int_{G_x/\Gamma_x} d\mu \right)$$
$$= \sum_{x \in H \setminus G/\Gamma} \frac{\int_{G_x} d\mu}{|\Gamma_x|}$$
$$= \sum_{x \in H \setminus G/\Gamma} \frac{\int_H d\mu}{|\Gamma_x|}$$
$$= \int_H d\mu \sum_{x \in H \setminus G/\Gamma} \frac{1}{|\Gamma_x|}.$$

The geometry of numbers I

Proposition 5 (Weil)

One has

$$\int_{\mathbb{A}_K/K} \omega_{\mathbb{A}_K} = q^{g-1}.$$

Proof. For the compact open subgroup $\mathbb{A}_K(0)$ of \mathbb{A}_K Serre's formula implies

$$= \frac{\int_{\mathbb{A}_{K}/K} \omega_{\mathbb{A}_{K}}}{\|L(0)\|^{\omega}} \sum_{\mathbb{A}_{K}(0)\setminus\mathbb{A}_{K}/K} \frac{1}{\|K\cap\mathbb{A}_{K}(0)\|}$$

$$= \frac{\|\mathbb{A}_{K}/\mathbb{A}_{K}(0)+K\|}{\|L(0)\|} \int_{\mathbb{A}_{K}(0)} \omega_{\mathbb{A}_{K}}.$$

Since

$$\int_{\mathbb{A}_K(0)} \omega_{\mathbb{A}_K} = \int_{\widehat{\mathcal{O}}_K} \omega_{\mathbb{A}_K} = 1$$

by Riemann–Roch (or rather its underlying definitions)

$$\int_{\mathbb{A}_K/K} \omega_{\mathbb{A}_K} = q^{g-1}.$$

The geometry of numbers II

Proposition 6 (Weil)

One has

$$\int_{\mathbb{A}_K(D)} \omega_{\mathbb{A}_K} = q^{\deg(D)}.$$

Riemann–Roch implies

$$\int_{\mathbb{A}_K(D)} \omega_{\mathbb{A}_K} = q^{\deg(D)}.$$

III

Harder's reduction theory

Filtrations of unipotent radicals

Proposition 7 (Demazure, Grothendieck) Let

- Y/\mathbb{F}_q a non-singular projective curve,
- G/Y a reductive group Y-scheme and
- P/Y a parabolic subgroup of G/Y.

Then there exists a filtration

 $R_u(P) = U_0 \supset U_1 \supset \cdots \supset U_k = \{e\}$

with U_i/U_{i+1} vector bundles over Y.

More precisely:

$$U_{i} = \prod_{\alpha \in \Delta_{P}^{+}, l(\alpha) > i} P_{\alpha}$$
$$U_{i}/U_{i+1} \cong \prod_{\alpha \in \Delta_{P}^{+}, l(\alpha) = i+1} P_{\alpha}$$

where P_{α} is the vector bundle over Y corresponding to the root space \mathfrak{g}^{α} .

Harder's numerical invariants I

Let

- B/Y a minimal parabolic subgroup of G and
- $(P_i/Y)_i$ the maximal parabolic subgroups of G containing B.

Define

$$p_i(B) := p(P_i) = \sum_{\alpha \in \Delta_{P_i}^+} \deg(\mathcal{L}(P_\alpha))$$

where $\mathcal{L}(P_{\alpha})$ is the divisor/locally free \mathcal{O}_{Y} -module corresponding to P_{α} .

Define moreover

$$\chi_{P_i} := \sum_{\alpha \in \Delta_{P_i}^+} \dim(P_\alpha) \alpha.$$

Harder's numerical invariants II

Theorem 8 (Harder)

Let

- G/Y a reductive group Y-scheme,
- P/Y a max. parabolic subgroup,
- $\mathfrak{K} := G(\widehat{\mathcal{O}}_K)$ and
- ω a volume form on $R_u(P)$ defined over K.

Then

$$\int_{R_u(P(\mathbb{A}_K))\cap\mathfrak{K}}\omega_{\mathbb{A}_K}=q^{p(P)}.$$

Proof. One computes

$$\int_{R_{u}(P(\mathbb{A}_{K}))\cap\mathfrak{K}}\omega_{\mathbb{A}_{K}} \stackrel{\overline{7}}{=} \prod_{\alpha\in\Delta_{P}^{+}} \left(\int_{P_{\alpha}(\mathbb{A}_{K})\cap\widehat{\mathcal{O}}_{K}}\omega_{\mathbb{A}_{K}} \right)$$
$$\stackrel{\underline{6}}{=} \prod_{\alpha\in\Delta_{P}^{+}} q^{\operatorname{deg}(\mathcal{L}(P_{\alpha}))}$$
$$\stackrel{\underline{def}}{=} q^{p(P)}.$$

 \square

A transformation formula

Theorem 9 (Harder) For each $x \in P(\mathbb{A}_K)$

$$\int_{R_u(P(\mathbb{A}_K))\cap\mathfrak{K}}\omega_{\mathbb{A}_K} = |\chi_P(x)| \int_{R_u(P(\mathbb{A}_K))\cap^x\mathfrak{K}}\omega_{\mathbb{A}_K}.$$

Proof. The absolute value of the determinant of the derivative of conjugation by x

 $\begin{aligned} |\chi_P(\cdot)| : P(\mathbb{A}_K) & \stackrel{\text{ad}}{\to} & \mathsf{GL}\left(\mathsf{Lie}(R_u(P(\mathbb{A}_K)))\right) \\ & \stackrel{\text{det}}{\to} & \mathsf{GL}\left(\bigwedge^d \mathsf{Lie}(R_u(P(\mathbb{A}_K)))\right) \\ & \stackrel{|\cdot|}{\to} & \mathbb{R} \\ & x & \mapsto & |\chi_P(x)| \end{aligned}$

measure the ration of the volumes of

 $R_u(P(\mathbb{A})) \cap \mathfrak{K}$ and $R_u(P(\mathbb{A})) \cap {}^x\mathfrak{K}$.

 \square

A Morse function

Let

- $\emptyset \neq S \subset Y^{\circ}$ finite,
- X product of the affine buildings of $G(K_P)_{P \in S}$,
- $\mathfrak{K} := G(\widehat{\mathcal{O}}_K).$

For $g \in \prod_{P \in S} G(K_P)$ and $x = \operatorname{Fix}_X({}^g\mathfrak{K})$ define

$$p_i(B,x) := \log_q \left(\int_{R_u(P_i(\mathbb{A}_K)) \cap {}^g \mathfrak{K}} \omega_{\mathbb{A}_K} \right)$$

$$\stackrel{8,9}{=} p_i(B) + \sum_{P \in S} \deg(P) \nu_P(g).$$

This function

• is affine linear on each appartment whose boundary at infinity contains P_i ,

• and can therefore be extended to all of X.

Then

 $X^{p}(c) = \{x \in X_{S} \mid p_{i}(B, x) \leq c \text{ for } B \text{ nice}\}$ yields a filtration which is suitable for studying finiteness properties of the *S*-arithmetic group $G(\mathcal{O}_{S})$.

Study these via

- algebraic geometry,
- CAT(0) theory,
- building theory.

Applications

Theorem 10 (Bux, Wortman 2007)

Let G be an absolutely almost simple $\mathbb{F}_q(t)$ isotropic algebraic $\mathbb{F}_q(t)$ -group with $\mathsf{rk}_{\mathbb{F}_q(t)}G =$ 1.

The finiteness length of an S-arithmetic subgroup of $G(F_q(t))$ is

$$\left(\sum_{P\in S} \mathsf{rk}_{\mathbb{F}_q(t)_P} G\right) - 1.$$

Theorem 11 (Bux, G., Witzel 2009/10)

Let G be an absolutely almost simple \mathbb{F}_q -group of rank $n \geq 1$. Then

- $G(\mathbb{F}_q[t])$ is of type F_{n-1} but not F_n and
- $G(\mathbb{F}_q[t, \frac{1}{t}])$ is of type F_{2n-1} but not F_{2n} .

Conjecture 12

The finiteness length of an S-arithmetic subgroup of $G(F_q(t))$ is always

$$\left(\sum_{P\in S} \mathsf{rk}_{\mathbb{F}_q(t)_P} G\right) - 1.$$