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In this paper we have proposed a novel amplitude suppression algorithm for EEG signals
collected during epileptic seizure. Then we have proposed a measure of chaoticity for a
chaotic signal, which is somewhat similar to measuring sensitive dependence on initial
conditions by measuring Lyapunov exponent in a chaotic dynamical system. We have shown
that with respect to this measure the amplitude suppression algorithm reduces chaoticity in a
chaotic signal (EEG signal is chaotic). We have compared our measure with the estimated
largest Lyapunov exponent measure by the largelyap function, which is similar to Wolf’s
algorithm. They fit closely for all but one of the cases. How the algorithm can help to improve
patient specific dosage titration during vagus nerve stimulation therapy has been outlined.
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1. Introduction

Amplitude suppression in a signal may have important applications, for example, it has been

shown that off line spike suppression in a sampled EEG signal can help to determine dosage

titration in electrical stimulation therapy to control epileptic seizures [1]. By spike we mean

very high amplitude phases of an EEG signal. During epileptic seizure neurons fire in

unusual synchrony and this gives rise to heightened action potentials, which is manifested in

the form of spikes in the EEG signal. In this paper we shall describe a novel algorithm, which

is able to suppress amplitude in an epileptic EEG signal. The beauty of the algorithm is that it

only suppresses the amplitude at each and every point by the desired (predetermined) amount

and does nothing else. All other characteristics of the signal remain exactly the same. In other

words unlike filtering we do not lose any information.

Chaos control has been a hot topic of research for the last fifteen years, since the seminal

paper of Ott, Grebogy and Yorke appeared [2]. Numerous applications of chaos control have

been found both in science and engineering [3]. Many systems of interest in science and

engineering are dynamical systems, that is, systems, which change with respect to time.

Roughly speaking, a chaotic dynamical system is one, which cannot be predicted with good

accuracy. A rigorous mathematical definition of chaos appears in reference [4]. A subsequent

modification of the definition appeared in [5]. A time series output of a dynamical system
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is called a signal. When the dynamical system is chaotic we call the output signal chaotic. A

brain is considered a chaotic dynamical system [6,7] and therefore the EEG signals, produced

by it, are chaotic in general. A signal can be chaotic in another sense—when the amplitude is a

random variable with respect to time. EEG signals are chaotic in that sense too [8]. In this paper

we have proposed a measure of chaoticity for a chaotic signal. With respect to this measure our

amplitude suppression algorithm reduces chaoticity in a chaotic signal.

In section 2 we describe the amplitude suppression algorithm for epileptic EEG signals. In

section 3 we describe the new measure of chaoticity in a chaotic signal and show how the

amplitude suppression algorithm is reducing chaoticity in a chaotic signal. We call this new

measure average signal Lyapunov exponent (ASLE). In section 4 we have compared ASLEs

of ten different EEG signals collected during epileptic seizure with estimated largest

Lyapunov exponents as calculated by the largelayap function [9]. They fit closely with each

other in all but one channel. This suggests that ASLE is a good measure of chaoticity. In

section 5 we have outlined a new stimulation protocol for the dosage titration in vagus nerve

stimulation (VNS) based on the spike suppression algorithm.

2. Amplitude suppression in epileptic EEG signals

In this section we shall describe a novel algorithm to suppress the amplitude of an EEG

signal, collected from an epileptic patient during seizure, keeping all other characteristics of

the signal intact. We shall first plot the signal in the Euclidean plane in order to treat it like a

trajectory of a dynamical system with a two-dimensional (2D) phase space. Then we

introduce new parameters into the system, in order to use them as control parameters. Then

we plot the trajectory with suitable parameter values and transform back that trajectory into a

“signal”, which is a mirror image of the original signal except for reduced amplitude at each

time instant. Throughout this paper unless otherwise mentioned, r ¼ r(t) will denote

amplitude of a signal at time t. The signal is actually sampled and hence digital. t takes

integer values only.

1. Proc (Amplitude_suppression)

2. Input 5 An epileptic EEG signal in time domain;

3. Output 5 Exactly the same signal except for reduced amplitude at each time

instant;
4. Choose (a, b) . (0, 0);

5. For t ¼ first sample point to the last sample point

6. {Plot(ar(t)cos(t), br(t)sin(t));

7. Add two subsequent points by a line;}

8. End

9. For (x, y) ¼ first point to last point

10. {Plot(t ¼ arctan(ay/bx), r ¼ (x 2 þ y 2)1/2);

11. Add two subsequent points by a line;}
12. End

13. Proc (Choose (a, b));

14. a . 0;

15. b . 0;

16. a – b;

17. a þ b ¼ 1;
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Clearly, if we take a þ b ¼ 1 then 0 , a , 1 and 0 , b , 1. Both x and y will be

smaller after dampening (suppression). So amplitude will be smaller. Since a þ b ¼ 1,

taking a smaller value for a means taking a larger value for b and vice versa. This keeps the

whole dampening in nice balance. For a near uniform reduction in amplitudes over all the

time instants it is recommended that a should be taken slightly ,0.5 and b should be taken

slightly .0.5.

Notice that the total amount of reduction in amplitude of the EEG signal is

Dr ¼ rðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 2 aÞ2cos2t þ ð1 2 bÞ2sin2t

q
: ð2:1Þ

If Dr/r (when r – 0) is to be made constant, i.e. the change in signal is uniformly

(Dr/r) £ 100% across all t then (df(t)/dt) ¼ 0, where f(t) ¼ (1 2 a)2 cos2t þ (1 2 b)2 sin2(t).

This implies

ða2 bÞðaþ b2 2Þsin 2t ¼ 0 ð2:2Þ

for all t. That is, either

a ¼ b; ð2:3Þ

or,

aþ b ¼ 2: ð2:4Þ

Equation (2.4) will actually enhance the amplitude of the signal unless a ¼ b ¼ 1, in which

case the original signal will remain unchanged. From equation (2.1) it is clear that when

equation (2.3) holds the signal after dampening is changed by (1 2 a) £ 100%. To avoid too

much dampening to the signal, when that is required, it is recommended that a be chosen

.0.5. In light of this we can rewrite the subroutine Choose in the following manner.

18. Proc (Choose (a, b))

19. a . 0;

20. b . 0;

21. a ¼ b . 0.5;

Note that when a ¼ b ¼ 0.6 the spike suppression is by 40%, when a ¼ b ¼ 0.7 the

spike suppression is by 30%, etc. This may potentially be used to regulate the amplitude

suppression uniformly by a fixed percentage. So we have come up with two spike

suppression algorithms for a signal, one in variable mode and the other in fixed mode.

Now we shall present a human epileptic EEG data based example to demonstrate the

method described so far. In figure 1 raw EEG signal collected through a single on the

scalp electrode (out of seventeen such electrodes placed all over the scalp of an epileptic

patient) during the onset of a seizure, has been shown. Amplitude of the signal at

certain instant becomes much higher than usual, which is called spike. The same EEG

signal has been plotted by the absolute value of the amplitude in figure 2. From figure 2

it appears that if we can reduce the spike amplitude by (1 2 (6/8)) £ 100 ¼ 25% (say,

by applying electrical stimulation to the brain [10]) then that will be able to control the

seizure [11]. So according to the fixed mode spike suppression (i.e. a ¼ b ¼ (6/8)) the

brain will have to be stimulated in a way to produce 25% across the board amplitude
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reduction. In the next section we shall calculate the amount of stimulation in such a

situation.

Figure 3 through 9 describe the algorithm and its result on a particular EEG signal.

The signal of figure 1 has been polar-plotted in figure 3. Parameters a and b have been

introduced into the polar-plot and this has been shown in figure 4. Figure 4 shows the

amplitude suppression by introducing new parameters and carefully choosing their values

(between 0 and 1). Figure 4 describes lines 5 through 8 in the algorithm. In all the

figures suppressed signal has been shown in blue and non-suppressed one in red. Figure 5

gives the signal in absolute value of the amplitude as got back by inverse transformation

from figure 4. Figure 5 shows lines 9 through 12 of the algorithm. Figure 6 shows the

comparison result. It shows the original signal (in red as shown in figure 1) superimposed

with the suppressed signal (in blue as shown in figure 5). The superimposition is on

every time instant and both the signals are plotted in absolute value of amplitude. Figure

7 depicts in blue the difference in amplitude at each time instant between the original

and the suppressed signal. It is the plot of Dr(t) as given by equation (2.1). Figures 8 and

9 give the superimposition of Dr(t) (in blue) on the original signal (in red) for two

different set of parameter values. These two figures comparatively show why the values

of a and b should be taken close to 0.5 in order to keep the amount of suppression

moderate.

Figure 1. Millivolt (mV) vs. millisecond (msec) plot of the raw EEG signal collected through electrode number 2
(channel 2) out of a total 17 electrodes placed over the scalp of an epileptic patient during the occurrence of a seizure.
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3. Chaos control in EEG signals

Despite widespread popularity of chaos control techniques and the abundance of highly

random, erratic signals like EEG, not much attention has so far been paid to reduce the

randomness in a signal by a chaos control methodology. Chaos has a precise mathematical

definition [4], which is completely deterministic. According to this definition a system must

satisfy three conditions (not independent [5]) to be chaotic. One of them is the sensitive

dependence on initial conditions. This is the criterion almost universally adopted as the

notion for chaoticity, i.e. any system, which shows sensitive dependence on initial conditions

is recognized as chaotic. This condition is typically determined by measuring Lyapunov

exponents [3]. For a multidimensional system there will be more than one Lyapunov

exponents (one for each dimension). In a system with sensitive dependence on initial

conditions, or chaotic system, at least one of them will have to be positive. So we can say that

the largest Lyapunov exponent in a chaotic system is positive. In fact the value of the largest

Lyapunov exponent can be taken as a measure of chaoticity of the system. The higher the

value the more chaotic the system is.

To measure the sensitive dependence on initial conditions by the largest Lyapunov

exponent the underlying dynamical system must have more than one trajectories, for the

sensitive dependence on initial conditions is a measure of how two trajectories are

(exponentially) moving apart from each other over time. But the polar plot of an EEG signal

has only one trajectory. Here the chaoticity is indicated by how arbitrarily the trajectory is

Figure 2. Plot of the absolute value of the amplitudes of the EEG signal shown in figure 1.
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stretching or compressing during evolution over time (figures 3 and 4). Since the trajectory is

2D the stretching and compressing are taking place along X and Y axes. To measure the

average stretching and compressing along each direction let us introduce a Lyapunov

exponent like measure, which we may call average signal Lyapunov exponent (ASLE),

which we define as follows, where k is the number of data points.

lx ¼
1

k

Xk
i¼1

log
jrðti þ DtiÞcosðti þ DtiÞ2 rðtiÞcosðtiÞj

Dti
ð3:1Þ

ly ¼
1

k

Xk
i¼1

log
jrðti þ DtiÞsinðti þ DtiÞ2 rðtiÞsinðtiÞj

Dti
: ð3:2Þ

The entire polar plot of a signal (figure 3) is like a phase space of a 2D dynamical system. It

will have two ASLE lx and ly, respectively along X and Y directions. In equations (3.1) and

(3.2) we have defined the ASLE of the system, which is somewhat similar to calculating the

conventional Lyapunov exponents [3]. Here we have used lx and ly to indicate how the

amplitude suppression algorithm reduces their value and thereby controls chaos in a signal.

Figure 3. Polar plot of the original signal, where r cos(t) and r sin(t)are the projections along X and Y axes,
respectively.
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When amplitudes have been suppressed with a and b then equations (3.1) and (3.2)

become

lx ¼
1

k

Xk
i¼1

log
ajrðti þ DtiÞcosðti þ DtiÞ2 rðtiÞcosðtiÞj

Dti

¼
1

k

Xk
i¼1

log
jrðti þ DtiÞcosðti þ DtiÞ2 rðtiÞcosðtiÞj

Dti
þ log

a

Dti

� �
: ð3:3Þ

ly ¼
1

k

Xk
i¼1

log
bjrðti þ DtiÞsinðti þ DtiÞ2 rðtiÞsinðtiÞj

Dti

¼
1

k

Xk
i¼1

log
jrðti þ DtiÞsinðti þ DtiÞ2 rðtiÞsinðtiÞj

Dti
þ log

b

Dti

� �
: ð3:4Þ

Dti ¼ Dtj $ 1 ;i, j and 0 , a , 1, 0 , b , 1, which imply that logða=DtiÞ , 0 and

logðb=DtiÞ , 0. That is, both the ASLE along X and Y axes have been reduced. lx has

been reduced by logða=DtiÞ and ly has been reduced by logðb=DtiÞ. Particularly the largest

ASLE, if it is positive, its absolute value is reduced. This means that the system has

Figure 4. The polar plot with suppression by a and b, where a ¼ 0.8 and b ¼ 0.2.
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become less dependent on the initial conditions in the sense that after amplitude

suppression if initially the stretching is small after some time the stretching may still be

quite large, but not as large as in case of the original signal. Or, in other words it has

become less chaotic. So our amplitude suppression algorithm also controls chaoticity in a

signal. It is obvious from equations (3.3) and (3.4) that the arguments of the logarithmic

functions will be fractions in case the signal is regular and this will produce negative

Figure 5. The damped signal. Only the absolute values of the amplitudes have been taken.

Figure 6. The superposition of the damped signal (blue) over the original one (red). Only the absolute values of the
amplitudes have been taken.
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values for both lx and ly. Notice that the signal is chaotic, but reduction of chaoticity

depends on the amount of suppression induced and not on the signal. This is the beauty of

the algorithm.

4. ASLE vs. largest Lyapunov exponent

Sensitive dependence on initial conditions has remained the most widely used criterion to

determine if a dynamical system is chaotic. An n-dimensional dynamical system has n

different Lyapunov exponents, one for each dimension. A dynamical system to have

sensitive dependence on initial conditions, and therefore to be chaotic, must have at least one

positive Lyapunov exponent. The largest Lyapunov exponent of a dynamical system is a very

reliable measure of chaoticity of the system. The largest Lyapunov exponent of a system can

be calculated in several ways. Here we have followed the largelyap algorithm as described in

[9], which is very similar to Wolf’s algorithm [12]. We have run both ASLE and largelyap on

ten different human epileptic EEG signals (EEG signals are considered chaotic [8]) collected

through ten on the scalp electrodes from a patient during the onset of seizures. The results

have been presented in table 1.

Since ASLE treats a signal as a trajectory of a 2D dynamical system it gives two measures

of stretching and/or compressing, one each in the direction of a coordinate axis. In table 1

we have printed both the values of ASLE. Only the larger one is to be taken as a measure of

chaoticity and is to be compared with the largest Lyapunov exponent. Notice that for all

Figure 7. The difference of amplitudes between original signal and the damped one.
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channels except one (channel 10) the largest ASLE value is quite close to the value

determined by largelyap. In channel 10 the largelyap value is significantly less than that of

the largest ASLE value of the EEG signal. However the prediction errors [9] of channel 10

remain quite high (e.g. higher than those of channel 9) and therefore the channel 10 EEG

signal is more chaotic (than, for example, channel 9), yet its largelyap value is low (e.g. lower

than the EEG signal of channel 9). On the other hand the largest ASLE value gives a more

consistent estimate of chaoticity (channel 9 value is less than channel 10). From this we can

guess that the largest ASLE value is a relatively better measure of chaoticity in a chaotic

signal than the largest Lyapunov exponent as estimated by largelyap (for the details of

largelyap calculation and prediction error please see [9]).

5. Possible effect on stimulation therapy

In this section we will only briefly outline an approach to improve electrical stimulation

therapy for the epileptic patients. However the approach is completely theoretical and no

clinical trial is possible at this stage.

Electrical stimulation therapy has proved to be effective for a certain percentage of

epileptic patients who do not respond to anticonvulsant drugs (for a review of various

stimulation therapies for the epileptic patients see [13]). It is often tried as a better alternative

before surgical resection, whose side effects may be significant. How various stimulations,

Figure 8. Superimposition of the difference between the original and the damped signals (blue) over the original
one (red) for a ¼ 0.8 and b ¼ 0.2.
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Figure 9. Superimposition of the difference between the original and the damped signals (blue) over the original
one (red) for a ¼ 0.45 and b ¼ 0.55.

Table 1. ASLE has been calculated both for x and y directions, the larger one is to be compared with the largelyap
value.

Channel ASLE (along x and y axes) Largelyap

2 lx ¼ 0.2047 l ¼ 0.2068
ly ¼ 0.2055

3 lx ¼ 0.3501 l ¼ 0.2254
ly ¼ 0.3342

4 lx ¼ 0.8261 l ¼ 0.8791
ly ¼ 0.8291

5 lx ¼ 0.6772
ly ¼ 0.6933

l ¼ 0.6507

6 lx ¼ 0.6737 l ¼ 0.6026
ly ¼ 0.6461

7 lx ¼ 0.6661 l ¼ 0.6477
ly ¼ 0.6172

8 lx ¼ 0.5542 l ¼ 0.5005
ly ¼ 0.5418

9 lx ¼ 0.9258 l ¼ 0.9001
ly ¼ 0.9152

10 lx ¼ 0.9356 l ¼ 0.4830
ly ¼ 0.9089

11 lx ¼ 0.7125 l ¼ 0.7174
ly ¼ 0.7015
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e.g. VNS works has not yet been understood fully [11]. The stimulation dosage is fixed by the

physician in a stipulated step by step manner. If the patient experiences problems then the

dosage is lowered. Otherwise it is maintained at a standard level [11]. Since the effect of

stimulation therapy is to suppress seizure activity and thereby suppress spikes in the EEG

signal, we can measure a more appropriate patient-specific dosage titration for the VNS with

the help of the spike suppression algorithm described in section 2.

Once the patient is surgically implanted with the vagus nerve stimulator (Cyberonics

Corporation, Houston, TX, USA) and the wound heals in about two weeks, the doctor begins

the dosage titration with a non-invasive wand fitted with a computer loaded with a software

according to a fixed guideline (for detail see [11]). According to our proposed protocol the

patient will have to be administered mild test stimulations by the implanted stimulator within

the currently stipulated limit [11]. The patient’s EEG will have to be monitored before,

during and immediately after the test stimulations. Let average EEG amplitude before

stimulation be rab and after raf, where subscripts a, b and f stand for average, before and after,

respectively.

rab ¼

Ð 0

2T
rbðtÞdtÐ 0

2T
dt

ð5:1Þ

and

raf ¼

Ð T 0

0
raðtÞdtÐ T 0

0
dt

; ð5:2Þ

where T and T 0 are (both positive) suitable time intervals and 0 denotes the instance of

stimulus onset. I be the average stimulus intensity. Now consider N number of trials. Let data

obtained at the ith trial be indexed by i. Consider the sequence ðI i; riab 2 riaf Þ
N

i¼1
. Plot these N

points on the Euclidean plane. Had the system worked according to Ohm’s law all these

points would have been arranged in a straight line passing through the origin. But it is highly

unlikely that the brain under stimulation will behave like a perfect Ohmic system. In that case

we can determine the least square regression line [14] with respect to these N points. In case

of Ohmic system this line would have been the line passing through all the N points and it’s

slope would have given the resistance of the medium (tissues in this case). In analogy to this

we take the slope of the regression line to be the value of the patient characteristic measure P.

We propose the amount of stimulation to be applied to the brain is

IðtÞ ¼
Dr

P
; ð5:3Þ

where Dr is the amplitude suppression in the EEG signal.

Next we shall have to determine Dr in order to determine I(t) according to equation (5.3).

This can be done in either of two ways. First, spikes can be detected in the patient’s EEG

signal during occurrence of seizure by visual inspection by the physician or by an

automated spike detection algorithm [15,16]. Then the physician can determine by how

much the percentage of that spike amplitude will have to be suppressed. a ¼ b (fixed mode

method as described in section 2) is to be chosen accordingly in equation (2.1) and this will

give the value of the Dr to be substituted in equation (5.3). Alternatively, we can choose
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a . 0.5 and b , 0.5 (variable mode method as described in section 2) to run the spike

suppression algorithm on the off line EEG signal collected from that particular patient

during the onset of epileptic seizure. a and b are to be chosen to suppress the (off line)

seizure EEG signal to a desired degree. Then these particular values of a and b are to be

substituted in equation (2.1) for the Dr, which in turn will have to be substituted in equation

(5.3) to give the stimulation current I(t).

Note that frequency and amplitude of I(t) are both variable since they are variable in Dr(t).

In particular frequency of I(t) is equal to the frequency of Dr(t), which is equal to the

frequency of the EEG signal to be suppressed. But the frequency of the EEG signal may often

be more than 30 Hz and this requires that according to this protocol the brain should be

stimulated at a rate more than 30 Hz, which is beyond the current limit stipulated by the

Federal Drug Administration of the USA [11]. This prevents the clinical trial of this protocol.

Nevertheless it indicates the importance of model based research on stimulation therapy,

which may eventually lead to an improved stimulation protocol one day with better results

and lesser side effects.

6. Conclusion

In this paper we have described a novel amplitude suppression algorithm, which can reduce

the amplitudes of spikes in an epileptic EEG signal to any desired degree without altering any

other characteristics of the signal. We have shown that this algorithm can also reduce

chaoticity in a chaotic signal. For this purpose we had to define a new measure of chaoticity

for chaotic signals and with respect to this measure the reduction of chaoticity has been

achieved. The new measure has been named ASLE. We have compared the largest value of

ASLE with the largest Lyapunov exponent and their close fit in most cases suggests that the

largest ASLE is a good measure of chaoticity in a signal. Our experimentation in section 4

has shown that the largest ASLE may even be a better measure of chaoticity in a chaotic

signal than the largest Lyapunov exponent as estimated by largelyap algorithm. Moreover

ASLE is easier to compute than the Lyapunov exponent.

Apart from reducing chaoticity the spike (and amplitude) suppression algorithm has at

least two other important potentialities. A new VNS protocol based on this algorithm has

been outlined in this paper. This new stimulation protocol proposes a patient specific dosage

titration for the VNS therapy. Contrary to the current practice it suggests a variable amplitude

and frequency stimulation and frequency of the stimulation may often be more than the

current FDA approved limit of 30 Hz. Various advantages of higher frequency stimulation

has been discussed in [10] and in the references there in. We have shown how the dosage

titration should be controlled in a patient-specific manner for such a higher frequency

stimulation.

Another potential benefit of the algorithm is that it can very efficiently amplify EEG

signals by any desired degree. Raw EEG, after collection, is often amplified with the help of

an electronic amplifier, which adds up noise to the signal. As discussed in section 2, if a, b

are both taken to be ,1 the amplitude is suppressed, but if they are taken .1 then for the

same reasoning the algorithm will amplify the signal (augment the amplitude) without

changing any other characteristics by the slightest amount. If at least one of them is .1 then

also the signal will be amplified. Like the suppression the amplification will also have two

modes—fixed and variable. It is clear that if condition (2.4) is followed the amplification will

be in fixed mode, otherwise it will be in variable mode. By equation (2.4) the signal can be
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amplified by any fixed percentage over each time instant. Amplifier noise is an important

issue in the relevant biomedical engineering industries. Since this algorithm can amplify

EEG signal just by computer implementation (writing only a few tens of lines of code in

MATLAB or perhaps a longer code in any other suitable language), it does not add up any

noise to the already fragile data. Moreover it will considerably reduce the cost of

amplification and make the apparatus for collecting the signal handy.
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