1. For all $i \in \mathbb{Z}$, let $\lambda_{i} \geq 0, \mu_{i} \geq 0$ Consider a a continous time Markov chain $\left\{X_{t}\right\}_{t \geq 0}$ on \mathbb{Z} with generator matrix Q given by

$$
q_{i j}= \begin{cases}\lambda_{i} & \text { if } j=i+1 \\ \mu_{i} & \text { if } j=i-1 \\ 0 & \text { otherwise }\end{cases}
$$

Describe the backward equations for the above chain that the elements of the transition semigroup $P(t)$ has to satisfy.
2. Let $\left\{X_{t}\right\}_{t \geq 0}$ be a continuous time Markov Chain on S with generator matrix Q. Let $A \subset S$ and

$$
T^{A}=\inf \left\{t \geq 0: X_{t} \in A\right\}
$$

(a) Let $\left\{Y_{n}\right\}_{n \geq 0}$ be the jump chain associated to X and $T_{Y}^{A}=\min \{k \geq$ $\left.0: Y_{k} \in A\right\}$. Show that

$$
\left\{T^{A}<\infty\right\}=\left\{T_{Y}^{A}<\infty\right\}
$$

(b) Let $h^{A}: S \rightarrow[0,1]$ be given by $h^{A}(i)=P_{i}\left(T^{A}<\infty\right)$, show that h^{A} is the miminal non-negative solution to the system of linear equations

$$
\begin{array}{ll}
h^{A}(i)=1 & \text { for } i \in A \\
\sum_{j \in I} q_{i j} h^{A}(j)=0 & \text { for } i \notin A
\end{array}
$$

(c) Assume $q_{i}>0$ for all $i \notin A$. Let $k^{A}: S \rightarrow[0,1]$ be given by $k^{A}(i)=E_{i}\left(T^{A}\right)$, show that k^{A} is the miminal non-negative solution to the system of linear equations

$$
\begin{array}{ll}
k^{A}(i)=0 & \text { for } i \in A, \\
\sum_{j \in I} q_{i j} k^{A}(j)=-1 & \text { for } i \notin A
\end{array}
$$

3. Consider the Markov chain on $\{1,2,3,4\}$ with generator matrix

$$
Q=\left(\begin{array}{cccc}
-1 & \frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{4} & \frac{-1}{2} & 0 & \frac{1}{4} \\
\frac{1}{6} & 0 & \frac{-1}{3} & \frac{1}{6} \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Calculate
(a) the probability of hitting 3 starting from 1
(b) the expected time to hit 4 starting from 1.
4. ($\mathbf{M} \backslash \mathbf{M} \backslash \mathbf{1}$ Queue) Let us consider a single queue at a ticket counter. It takes a random time to serve one customer, this service time is distributed as Exponential (μ). The customers arrive according to a Poisson process of rate λ, i.e the interarrival times between customers is distributed as Exponential (λ). Let X_{t} denote the state of the system at time t.
(a) Find the generator matrix Q and the jump matrix π of the above chain.
(b) Find the distribution of the holding times, S_{i} at the state $i \in\{0\} \cup \mathbb{N}$.
(c) If $\lambda<\mu$, find the stationary distribution of the jump chain of X.
(d) Show that if $\lambda>\mu$ the queue length explodes as $t \rightarrow \infty$.
5. Let $\left\{X_{t}\right\}_{t \geq 0}$ be a continuous time Markov Chain on S with generator matrix Q. Let P be the transition semigroup of X and let Y be the associated jump chain of X. Suppose for dicrete time Markov chain Y, $i \rightarrow j$ then show that $p_{i j}(t)>0$ for all $t>0$.
6. Let $\left\{X_{t}\right\}_{t \geq 0}$ be a continuous time Markov Chain on \mathbb{Z} with generator matrix Q. Let $P(t)$ be its transition semigroup. Show that

$$
p_{i j}(t+s)=\sum_{k \in \mathbb{Z}} p_{i k}(t) p_{k j}(s),
$$

for all $i, j \in \mathbb{Z}$.
7. Claims to an insurance company arrive according to a Poisson process X with rate λ. Let us denote the arrival times as $\left\{W_{i}\right\}_{i \geq 1}$. Let $C_{i}>0$ (indepdenent of W_{i}) be the instantaneous claim payment made by the company at time W_{i}. Suppose

$$
S(t)=\sum_{i=1}^{X_{t}} e^{-r W_{i}} C_{i},
$$

denote the discounted value of the cummulative claim amount over the period $[0, t]$ and $r>0$. Find $E[S(t)]$ for $t>0$..

