1. Write a pi function that uses the built-in polyval function to evaluate the definite integral of a polynomial. The inputs to pi should be a vector of polynomial coefficients and the lower and upper limits of integration.
2. Write a qsp function that evaluates the integral of a cubic-spline approximation obtained with the splint function (in NMM toolbox).
3. Write a function betatrap that uses the Trapezoid rule to evaluate

$$
\beta(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x
$$

for any m and n and for a sequence of decreasing panel sizes h. You may modify demoTrap.
4. Write an m-file function the evaluates $\int_{0}^{2 \pi} \sin ^{2}(x) d x$ using the composite trapezoid rule and composite Simpson's rule. Your function may place calls to suitably modified trapezoid, simpson. Repeat the calculations for $n p=[12481632]$ where $n p$ is the number of panels.
5. Consider evaluating the integral

$$
\int_{0}^{1} \sqrt{x}
$$

(a) Suitably modify and use the routines trapezoid, simpson, to evaluate the integral for three different panel sizes $N=3,27,159$. Present a table comparing the measured truncation error as a function of panel size.
(b) Modify the routine adaptsimpson and evaluate the integral with the adaptive Simpson's rule using $\epsilon=0.00005$.
(c) Use inbuilt quad function and evaluate the integral.

