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Abstract

In Athreya et al. (2015) an invariance principle is stated for a class of strong Markov processes on
tree-like metric measure spaces. It is shown that if the underlying spaces converge Gromov vaguely, then
the processes converge in the sense of finite dimensional distributions. Further, if the underlying spaces
converge Gromov–Hausdorff vaguely, then the processes converge weakly in path space. In this paper
we systematically introduce and study the Gromov-vague and the Gromov–Hausdorff-vague topology on
the space of equivalence classes of metric boundedly finite measure spaces. The latter topology is closely
related to the Gromov–Hausdorff–Prohorov metric which is defined on different equivalence classes of
metric measure spaces.

We explain the necessity of these two topologies via several examples, and close the gap between them.
That is, we show that convergence in Gromov-vague topology implies convergence in Gromov–Hausdorff-
vague topology if and only if the so-called lower mass-bound property is satisfied. Furthermore, we prove
and disprove Polishness of several spaces of metric measure spaces in the topologies mentioned above.

As an application, we consider the Galton–Watson tree with critical offspring distribution of finite
variance conditioned to not get extinct, and construct the so-called Kallenberg–Kesten tree as the weak
limit in Gromov–Hausdorff-vague topology when the edge length is scaled down to go to zero.
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1. Introduction

The paper introduces the Gromov-vague and the Gromov–Hausdorff-vague topology. These
are two notions of convergence of (equivalence classes of) metric boundedly finite measure
spaces. These are “localized” versions of the Gromov-weak topology and a topology closely
related to the Gromov–Hausdorff–Prohorov topology on (equivalence classes of) metric finite
measure spaces.

Gromov-weak convergence and sampling. The Gromov-weak topology originates from the weak
topology in the space of probability measures on a fixed metric space. It is an example of a
topology which comes with a canonical family of measures and convergence determining test
functions. That is, given a complete, separable metric space, (X, r), we denote by M1(X) the
space of all Borel probability measures on X and by C̄(X) := C̄R(X) the space of bounded,
continuous R-valued functions. A sequence of probability measures (µn) converges weakly to
µ in M1(X) (abbreviated µn =⇒ µ), as n → ∞, if and only if


dµn f →


dµ f in R, as

n → ∞, for all f ∈ C̄(X).
We wish to consider sequence of measures that live on different spaces. In such a case an

immediate analogue of bounded continuous functions is not available. To still be in a position
to imitate the notion of weak convergence, we rely on the following useful fact: for a sequence
(µn) in M1(X) and µ ∈ M1(X),

µn =⇒
n→∞

µ if and only if µ⊗N
n =⇒

n→∞
µ⊗N. (1.1)

Indeed, the “if” direction follows by the fact that projections to a single coordinate are
continuous. The “only if” direction follows as the set of bounded continuous functions ϕ : XN

→

R of the form ϕ((xn)n∈N) =
N

i=1 ϕi (xi ) for some N ∈ N, ϕi : X → R, i = 1, . . . , N ,
separates points in XN and is multiplicatively closed (see, for example, [31, Theorem 2.7] for
an argument how to use [29] to conclude from here that integration over such test functions is
even convergence determining for measures on M1(X)).

Consider now the set of bounded continuous functions ϕ : XN
→ R of the following form

ϕ = ϕ̃ ◦ R(X,r), (1.2)

where R(X,r) denotes the map that sends a vector (xn)n∈N ∈ XN to the matrix (r(xi , x j ))1≤i< j ∈

R


N
2


+ of mutual distances, and ϕ̃ ∈ C̄(R


N
2


+ ) depends on finitely many coordinates only. A

(complete, separable) metric measure space (X, r, µ) consists of a complete, separable metric
space (X, r) and a Borel measure µ on X . Denote by X1 the space of measure preserving
isometry classes of metric spaces equipped with a Borel probability measure. Then for each
representative (X, r, µ) of an isometry class X ∈ X1 the image measure R(X,r)∗ µ⊗N

= µ⊗N
◦

(R(X,r))−1
∈ M1(R


N
2


+ ) is the same and is referred to as the distance matrix distribution νX

of X . It turns out that if the distance matrix distributions of two metric measure spaces coincide,
then the metric measure spaces fall into the same isometry class. This is known as Gromov’s
reconstruction theorem (compare [23, Chapter 3 1

2 ]), and suggests to consider the Gromov-weak
topology, which is the topology induced by the set of functions of the form

Φ(X, r, µ) =


XN

dµ⊗N ϕ =


dνX ϕ̃, (1.3)
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where ϕ is of the form (1.2). As this set is multiplicatively closed we can conclude once more
that it is also convergence determining for metric measure spaces on X1.

The Gromov-weak topology on spaces of metric measure spaces, prescribed by test functions
as in (1.3), originates from the work of Gromov in the context of metric geometry, where it is
induced by so-called box metrics. In [20] the Gromov-weak topology on complete, separable
metric measure spaces was reintroduced via convergence of the functions of the form (1.3),
and metrized by the so-called Gromov–Prohorov metric. Recently, in [31], it was shown that
Gromov’s box metric and the Gromov–Prohorov metric are bi-Lipschitz equivalent.

Independently of Gromov’s work, however, the idea of proving convergence of random
0-hyperbolic metric measure spaces (that means trees) via “finite dimensional distributions”,
i.e., with the help of test functions of the form (1.3), has been used before in probability theory.
As the land mark we consider [4, Theorem 23], which states Gromov-weak convergence of
suitably rescaled Galton–Watson trees towards the so-called Brownian continuum random tree
(CRT), where the Galton–Watson trees are associated with an offspring distribution of finite
variance, conditioned on a growing number of nodes and equipped with the uniform distribution
on its nodes. Other results using test functions which imitate sampling include [20, Theorem 4],
where the so-called Λ-coalescent tree is constructed as a Gromov-weak limit of finite trees.
Furthermore, distributions of finite samples from metric measure spaces are used in hypothesis
testing and for providing confidence intervals in the field of topological data analysis (see, for
example, [7,9]).

From Gromov-weak to Gromov–Hausdorff weak convergence. The following embedding result
is known from [20, Lemma 5.8]. A sequence (Xn) converges Gromov-weakly to X in X1 if
and only if there is a complete, separable metric space (E, d) such that (representatives of)
all Xn and X can be embedded measure-preserving isometrically into (E, d) in a way that the
image measures under the isometries converge weakly to the image limit measure. Using this
embedding procedure, we can also define a stronger topology: We say that a sequence (Xn)

converges Gromov–Hausdorff-weakly to X in X1 if and only if there is a metric space (E, d)
such that we can do the above embedding in a way that, additionally, the supports of the measures
converge in Hausdorff distance.

This topology is closely related to the one introduced under the name measured Hausdorff
topology in [17] in the context of studying the asymptotics of eigenvalues of the Laplacian on
collapsing Riemannian manifolds, and extended from compact to Heine–Borel measure spaces
in [28]. The difference to the Gromov–Hausdorff weak topology is that, instead of the supports,
the whole spaces are required to converge in Hausdorff metric topology. This leads to different
equivalence classes, and the connection is discussed extensively in Section 5. In probability
theory, the measured (Gromov-)Hausdorff topology was reintroduced and further discussed in
[16,34], and recently extended in [1] to complete, locally compact length spaces equipped with
locally finite measures.

Verification of convergence. As for the Gromov–Hausdorff-weak topology no canonical fam-
ily of convergence determining functions is available, a key question is how to actually verify
convergence in Gromov–Hausdorff-weak topology? According to the definition, first an embed-
ding of the whole sequence into the same metric space must be provided. For random forests
there has been the tradition to encode them (if possible) as excursions on compact intervals, and
showing then convergence of the associated excursions in the uniform topology. As the map that
sends an excursion to a tree-like metric measure space is continuous with respect to the Gromov-
(Hausdorff)-weak topology ([2, Proposition 2.9], [31, Theorem 4.8]), convergence statements
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obtained by re-scaling the associated excursions always imply convergence Gromov–Hausdorff-
weakly. This approach has been successfully applied to branching forests with a particular off-
spring distribution (see, for example, [14,13,22]). However, except for a few prototype models
there is no obvious way to assign to a random graph model an excursion coming from a Markov
process. In such a situation, Gromov–Hausdorff convergence and Gromov-weak convergence
are shown separately (for example, [24,12,3]), or the scaling results are stated either without
the measure, using Gromov–Hausdorff convergence (for example, [30,33,25]), or only in the
Gromov-weak topology (for example, [21]).

Closing the gap. It is known that, if all considered metric measure spaces satisfy a (common)
uniform volume doubling property, then Gromov-weak and Gromov–Hausdorff-weak topology
are the same [36, Corollary 27.27]. “Volume doubling” is a standard property for Riemannian
manifolds and regular, self-similar fractals. It is quite restrictive for random spaces, such as
random recursive fractals or, important for us, random R-trees. In particular, Aldous’s Brownian
CRT almost surely does not have the doubling property, as can be seen from the estimates in
[11, Theorem 1.3] (see also [15] for stable Lévy trees).

If the uniform volume doubling property fails, Gromov–Hausdorff-weak convergence is
in general not implied by Gromov-weak convergence. The gap between Gromov-weak and
Gromov–Hausdorff-weak topology, however, sometimes matters a lot.

Important example. We have recently considered in [5] a class of strong Markov processes on
natural scale with values in 0-hyperbolic compact metric spaces, which are uniquely determined
by their speed measures. We obtained in [5, Theorem 1] an invariance principle which states
convergence of such processes in path space provided the underlying metric (speed-)measure
spaces converge Gromov–Hausdorff-weakly. If we only assume Gromov-weak convergence,
the processes still converge in their finite dimensional distributions, but without the additional
convergence of the supports, convergence in paths space fails.

The main goal of the present paper is to close this gap between Gromov–Hausdorff-weak
and Gromov-weak topology. We show that provided metric measure spaces converge Gromov-
weakly, they also converge Gromov–Hausdorff-weakly if and only if the so-called (global) lower
mass-bound property (Definition 3.1) is satisfied. This allows to verify Gromov–Hausdorff weak
convergence via the following two steps (Theorem 6.1):

1. Verify convergence of the test functions from (1.3) together with
2. an extra “tightness condition” given by this lower mass-bound property.

The same lower mass function also turns out to be useful for characterizing the metric measure
spaces which are compact and Heine–Borel, respectively, and for proving that the subspaces
consisting of these metric measure spaces are Lusin spaces but not Polish if equipped with the
Gromov-weak topology. The lower mass-bound property also appears in a compactness condition
for the Gromov–Hausdorff-weak topology (Corollary 5.7). Furthermore, we also extend the
space of complete, separable metric probability measure spaces to complete, separable, metric
boundedly finite measure spaces and equip the latter with the so-called Gromov–(Hausdorff)-
vague topologies.

Outline. The paper is organized as follows: In Section 2 we recall the Gromov-weak topology on
the space of metric finite measure spaces and then use it to define the Gromov-vague topology
on the space of metric boundedly finite measure spaces. In Section 3 the global and local lower
mass-bound properties are defined and used to characterize compact metric (finite) measure
spaces and Heine–Borel metric boundedly finite measure spaces. In Section 4 we characterize
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Gromov-vague convergence via isometric embeddings and deduce criteria for Gromov-vague
compactness and Gromov-vague tightness, as well as Polishness of the space of metric boundedly
finite measure spaces in Gromov-vague topology. Furthermore, we show that the subspaces of
all compact and all Heine–Borel spaces, respectively, are Lusin but not Polish. In Section 5
we introduce the stronger Gromov–Hausdorff-vague topology, and clarify its relation to the
measured Gromov–Hausdorff topology and the Gromov–Hausdorff–Prohorov metric. We also
show that it is a Polish topology on the space of Heine–Borel boundedly finite measure spaces.
For the measured Gromov–Hausdorff topology and the Gromov–Hausdorff–Prohorov metric,
this means that restricting to spaces with measures of full support yields again a Polish space.
In Section 6 we prove our main convergence criterion for Gromov–Hausdorff-weak and -
vague convergence. Namely, given convergence in Gromov-weak or Gromov-vague topology,
Gromov–Hausdorff-weak or Gromov–Hausdorff-vague convergence is equivalent to the global
or local lower mass-bound property, respectively. In Section 7 we consider the construction of
trees coded by continuous, transient excursions, and show that the map which sends an excursion
to the corresponding metric boundedly finite measure space is continuous with respect to the
Gromov–Hausdorff-vague topology. Finally, as an example, we present the Gromov–Hausdorff-
vague convergence in distribution of suitably re-scaled finite-variance, critical Galton–Watson
trees, which are conditioned on survival, to the so-called continuum Kallenberg–Kesten tree.

2. The Gromov-vague topology

In this section we define the (pointed) Gromov-vague topology. We first introduce pointed
metric boundedly finite measure spaces, and the subspaces of interest. We recall the pointed
Gromov-weak topology on pointed metric finite measure spaces (Definition 2.5). The pointed
Gromov-vague topology is then defined based on the Gromov-weak topology via a “localization
procedure” (Definition 2.7). We discuss the connection between both topologies (Remark 2.8),
and present a perturbation result (Lemma 2.9).

A (pointed, complete, separable) metric measure space (X, r, ρ, µ) consists of a complete,
separable metric space (X, r), a distinguished point ρ ∈ X called the root, and a Borel measure µ
on X . Since all our spaces are pointed, complete and separable, we usually drop these adjectives
in the following when referring to metric measure spaces.

Definition 2.1 (Equivalence of Metric Measure Spaces). Two metric measure spaces (X, r, ρ, µ)
and (X ′, r ′, ρ′, µ′) are said to be equivalent if and only if there is an isometry φ : supp(µ) ∪

{ρ} → supp(µ′) ∪ {ρ′
} such that φ(ρ) = ρ′ and φ∗µ = µ′, where as usual we denote by

φ∗µ := µ ◦ φ−1 (2.1)

the push forward of the measure µ under the measurable map φ. We denote the equivalence of
metric measure spaces by ∼=. Most of the time, however, we do not distinguish between a metric
measure space and its equivalence class.

Recall that a Heine–Borel space is a metric space in which every bounded, closed set is com-
pact. A Heine–Borel space is obviously complete, separable and locally compact. We consider
the following subclasses of metric measure spaces.
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Definition 2.2 (X,XHB,Xc).

1. A metric measure space (X, r, ρ, µ) is called boundedly finite if the measure µ is finite on
all bounded subsets of X . Let X be the set of (equivalence classes of) metric boundedly finite
measure spaces.

2. X ∈ X is called Heine–Borel locally finite measure space if the equivalence class contains a
representative X = (X, r, ρ, µ) such that (X, r) is a Heine–Borel space. Denote the subspace
of Heine–Borel spaces in X by XHB.

3. An equivalence class X ∈ XHB is called compact metric finite measure space if it contains a
representative X = (X, r, ρ, µ) such that (X, r) is a compact space. Denote the subspace of
compact spaces in XHB by Xc.

We illustrate this definition with an example which is useful for considering continuum limits
of trees.

Example 2.3 (Locally Compact Geodesic Spaces and R-trees). Recall that a geodesic space is
a metric space in which every two points are connected by an isometric path, i.e. a path with
length equal to the distance between these points. A geodesic space is called R-tree if there is,
up to reparametrization, only one simple path between every pair of points. It is a classical fact
that every complete, locally compact geodesic space is a Heine–Borel space. In particular, XHB
contains the subclass of complete, locally compact R-trees with Radon measures. �

As every Heine–Borel space is locally compact, the local compactness assumption on the
geodesic space is obviously essential. The following remark discusses why the completeness
assumption is important as well.

Remark 2.4 (Non-complete Spaces). We can allow also non-complete spaces as elements of
X by identifying them with their respective completions. Note, however, that Radon measures
on non-complete metric spaces are not boundedly finite in general. Consider for example the
binary tree T := {ρ} ∪


n∈N{0, 1}

n with edges connecting w ∈ {0, 1}
n with (w, 0) ∈ {0, 1}

n+1

and (w, 1) ∈ {0, 1}
n+1, n ∈ N0, equipped with a metric determined by r(w, (w, 0)) =

r(w, (w, 1)) := c−n if w ∈ {0, 1}
n , for some c ∈ [

1
2 , 1), and equipped with the length measure

(see, Example 5.15 for a detailed definition). The length measure is indeed a Radon measure as
all compact subtrees are contained in a subtree spanned by finitely many vertices. On the other
hand (T, r) is bounded, but the length measure is not finite. Thus non-complete, locally compact
R-trees with a Radon measure are not elements of X in general.

Moreover, non-complete, locally compact R-trees with a boundedly finite measure are not
elements of XHB in general, as their completions do not need to be locally compact. Take for
example T := (0, 1] × {0} ∪


n∈N{

1
n } × [0, 1] ⊆ R2, and let r be the intrinsic length metric on

T (i.e., r(x, y) is the Euclidean length of the shortest path within T connecting x and y). Then
(T, r) is a non-complete R-tree, and it is easy to see that it is locally compact. Its completion
T = T ∪


(0, 0)


, however, is not locally compact, because (0, 0) does not possess any compact

neighborhood. �

We next recall the definition of the (pointed) Gromov-weak topology on metric finite measure
spaces (see [20] and [32, Section 2.1] for more details). As with the metric measure spaces, we
drop the adjective “pointed” in the following when referring to topologies on spaces of (pointed)
metric measure spaces.
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Definition 2.5 ((Pointed) Gromov-weak Topology). For m ∈ N, the m-point distance matrix

distribution of a metric finite measure space X = (X, r, ρ, µ) is the finite measure on R(
m+1

2 )
+

defined by

νm(X ) :=


Xm
µ⊗m(d(x1, . . . , xm)) δ(r(xi ,x j ))0≤i< j≤m , (2.2)

where x0 := ρ and δ is the Dirac measure. A sequence (Xn)n∈N of metric finite measure spaces
converges to a metric finite measure space X Gromov-weakly if all m-point distance matrix
distributions converge, i.e., if

νm(Xn) =⇒
n→∞

νm(X ), (2.3)

for all m ∈ N, where we write ⇒ for weak convergence of finite measures.

Next we define the Gromov-vague topology on the space X of metric boundedly finite measure
spaces. The construction is a straight-forward “localization” procedure, similar to the one used
by Gromov for Gromov–Hausdorff convergence of pointed locally compact spaces (compare
[23, Section 3B]).

Given a metric space (X, r), we use the notations Br (x, R) and Br (x, R) for the open
respectively closed ball around x ∈ X of radius R ≥ 0. If there is no risk of confusion, we
sometimes drop the subscript r . The restriction of a metric measure space X = (X, r, ρ, µ) ∈ X
to the closed ball B(ρ, R) of radius R ≥ 0 around the root is denoted by

X�R := (X, r, ρ, µ�B(ρ,R))
∼=


B(ρ, R), r�B(ρ,R)2 , ρ, µ�B(ρ,R)


. (2.4)

Generally (and informally), localization works as follows: given a topology on some class of
spaces, the localized form of convergence is defined for those spaces X , where for all R > 0,
the restriction X�R falls into the original class. Such spaces converge in the localized topology
if, for almost all R > 0, the restrictions converge. If d is a metric inducing the original topology,
the localized convergence can therefore, for example, be induced by the metric

d#X ,Y


:=


R+

dR e−R
1 ∧ d(X�R,Y�R)


. (2.5)

We need the following lemma for our definition of Gromov-vague topology. Denote the
Gromov–Prohorov metric, which we define in Section 4, by dGP. For the moment, it is enough
to know that it induces the Gromov-weak topology by [20, Theorem 5].

Lemma 2.6. Let (Xn)n∈N be a sequence in X and X = (X, r, ρ, µ) ∈ X. The following are
equivalent:

1. (Xn)�R −−−→
n→∞

X�R Gromov-weakly for all R > 0 with µ

Sr (ρ, R)


= 0, where Sr (ρ, R) =

Br (ρ, R) \ Br (ρ, R) is the sphere of radius R around ρ.
2. (Xn)�R −−−→

n→∞
X�R Gromov-weakly for all but countably many R > 0.

3. (Xn)�R −−−→
n→∞

X�R Gromov-weakly for Lebesgue-almost all R > 0.

4. There exists a sequence Rk → ∞ such that (Xn)�Rk
−−−→
n→∞

X�Rk
Gromov-weakly for all

k ∈ N.
5. d#

GP(Xn,X ) −−−→
n→∞

0.
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Proof. The implications “1. ⇒ 2. ⇒ 3. ⇒ 4”. are trivial.
“4. ⇒ 1”. is a consequence of the Portmanteau theorem. Indeed, assume that (Xn)�Rk

−−−→
n→∞

X�Rk
Gromov-weakly along a sequence Rk → ∞, and fix R > 0. Choose k ∈ N large

enough such that Rk ≥ R. Then, for every m ∈ N, νm((Xn)�Rk
) =⇒

n→∞
νm(X�Rk

). The first

row of the m-point distance matrix νm contains, by definition, the distances to the root. Hence
νm((Xn)�R) is equal to the restriction of νm((Xn)�Rk

) to the set of matrices with no entry in the
first row exceeding R. The set of these matrices is closed, hence, by the Portmanteau theorem,
the condition µ


Sr (ρ, R)


= 0 implies the claimed convergence.

“3. ⇔ 5”. follows directly from the fact that dGP induces the Gromov-weak topology, the
definition of d#

GP in (2.5), and the dominated convergence theorem. �

We are now in a position to define the Gromov-vague topology.

Definition 2.7 ((Pointed) Gromov-vague Topology). We say that a sequence (Xn)n∈N in X
converges to X ∈ X Gromov-vaguely if the equivalent conditions of Lemma 2.6 hold.

Note that usually localized convergence is not strictly a generalization of the original one,
because parts can “vanish at infinity” in the limit. For example, consider Gromov–Hausdorff
convergence of (pointed) compact metric spaces, and a sequence of two-point spaces, where the
distance between the two points tends to infinity. Such a sequence does not converge. In the
localized Gromov–Hausdorff topology, however, it converges to the compact space consisting of
only one point. A similar phenomenon arises for the Gromov-vague topology.

Remark 2.8 (Gromov-vague Versus Gromov-weak). Consider the subspaces Xfin and X1 of X,
consisting of spaces X = (X, r, ρ, µ) where µ is a finite measure, respectively a probability.
Then on X1, the induced Gromov-vague topology coincides with the Gromov-weak topology.
On Xfin, and even on Xc, however, this is not the case, because the total mass is not preserved
in the Gromov-vague convergence. In fact, for X = (X, r, ρ, µ), Xn = (Xn, rn, ρn, µn) ∈ Xfin,
The Gromov-weak convergence Xn → X is equivalent to Xn → X Gromov-vaguely and
µn(Xn) → µ(X). �

For a given metric space (X, r), denote by d(X,r)Pr the Prohorov-metric on the space of all finite
measures on (X,B(X)), i.e.,

d(X,r)Pr


µ,µ′


:= inf


ε > 0 : µ(A) ≤ µ′(Aε)+ ε, µ′(A) ≤ µ(Aε)+ ε ∀A closed


,

(2.6)

where Aε = { x : d(x, A) ≤ ε } is the closed ε-neighborhood of A. Recall that the Prohorov
metric induces weak convergence.

We conclude this section with a simple stability property of Gromov-vague convergence
under perturbations of the measures in a localized Prohorov sense. We will illustrate this later in
Section 7 with Example 5.15.

Lemma 2.9 (Perturbation of Measures). Consider X = (X, r, ρ, µ), Xn = (Xn, rn, ρn, µn) ∈

X, and another sequence of boundedly finite measure µ′
n on Xn, n ∈ N. Assume that Xn −−−→

n→∞

X Gromov-vaguely, and that there exists a sequence Rk → ∞ such that for all k ∈ N,

lim
n→∞

d(Xn ,rn)
Pr


µn�Rk

, µ′
n�Rk


= 0. (2.7)

Then X ′
n := (Xn, rn, ρn, µ

′
n) converges Gromov-vaguely to X .
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Proof. Notice that for every fixed k, n ∈ N,

lim
R↓Rk

d(Xn ,rn)
Pr


µn�R, µn�Rk


= 0. (2.8)

We may therefore assume w.l.o.g. that (2.7) and (Xn)�Rk
−−−→
n→∞

X�Rk
, Gromov-weakly, hold

along the same sequence (Rk)k∈N. Thus for any fixed k ∈ N,

(X ′
n)�Rk

−−−→
n→∞

X�Rk
, (2.9)

Gromov-weakly, by Theorem 5 of [20]. This, however, implies the claimed Gromov-vague
convergence. �

3. The lower mass-bound property

In this section we introduce the local and global lower mass-bound properties, and use them
to characterize compact spaces and Heine–Borel spaces, respectively. These properties are for-
mulated in terms of the following lower mass functions on the space of metric boundedly finite
measure spaces. For δ, R > 0, we define mR

δ : X → R+ ∪ {∞} as

mR
δ


(X, r, ρ, µ)


:= inf


µ


Br (x, δ)


: x ∈ Br (ρ, R) ∩ supp(µ)


, (3.1)

with the convention that the infimum of the empty set is ∞ (which may happen if ρ ∉ supp(µ)).
Furthermore, set

mδ := lim
R→∞

mR
δ = inf

R>0
mR
δ . (3.2)

The following property plays an important rôle at several places in later arguments.

Definition 3.1 (Lower Mass-bound Property). A set K ⊆ X of metric boundedly finite measure
spaces satisfies the local lower mass-bound property if and only if

inf
X ∈K

mR
δ (X ) > 0, (3.3)

for all R > δ > 0. It satisfies the global lower mass-bound property if and only if

inf
X ∈K

mδ(X ) > 0, (3.4)

for all δ > 0. We say that a single metric measure space X ∈ X satisfies the local/global
mass-bound property if and only if K := {X } does.

Notice that in the definition of mR
δ , we could have replaced the closed ball by an open ball

and/or the open ball by a closed ball without changing the conditions (3.3) and (3.4). We made
our choice such that mR

δ is upper semi-continuous, which will be convenient in some proofs.

Lemma 3.2 (Upper Semi-continuity). For every R, δ > 0, the lower mass functions mR
δ and mδ

are upper semi-continuous with respect to the Gromov-vague topology.

Proof. Fix R, δ > 0, and let Xn = (Xn, rn, ρn, µn) → X = (X, r, ρ, µ) be a Gromov-
vaguely converging sequence in X. Then we can choose R′ > R + δ such that X ′

n := Xn�R′

converges Gromov-weakly to X ′
:= X�R′ . By Lemma 5.8 of [20], we can assume w.l.o.g. that

X, X1, X2, . . ., are subspaces of some metric space (E, d), and µ′
n := µn�B(ρ,R′) converges
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weakly to µ′
:= µ�B(ρ,R′) on (E, d). We can then find for every x ∈ supp(µ) ∩ Br (ρ, R) a

sequence xn → x with xn ∈ supp(µn) for all n ∈ N. Thus

µ

B(x, δ)


= inf

ε>0
µ′


B(x, δ + ε)


≥ inf

ε>0
lim inf
n→∞

µ′
n


B(x, δ + ε)


≥ lim inf

n→∞
µn


B(xn, δ)


≥ mR

δ (Xn), (3.5)

where we have applied the Portmanteau theorem in the second step, and used in the last
step that xn ∈ B(ρn, R) for large enough n. Hence mR

δ is upper semi-continuous. Therefore,
mδ = infR>0 mR

δ is also upper semi-continuous. �

Corollary 3.3 (Lower Mass-bound Property is Preserved Under Closure). If K ⊆ X satisfies
the global or local lower mass-bound property, the same is true for its Gromov-vague closure K.

Lemma 3.4 (Characterization of Compact mm-spaces). Let X ∈ X. Then X is a compact
metric finite measure space if and only if it has finite total mass, and satisfies the global lower
mass-bound property.

Proof. “⇒” Assume that X = (X, r, ρ, µ) is compact. Then X is bounded, and hence µ is a
finite measure. For every δ > 0, the function x → µ


B(x, δ)


is lower semi-continuous. There-

fore, it attains its minimum on the compact set supp(µ), and thus the global lower mass-bound
property holds.

“⇐” Assume that µ is finite, and that the global lower mass-bound property holds. Then for
all δ > 0, we can cover supp(µ) with finitely many balls of radius 2δ. To see this, notice that we
can choose an at most countable covering {B(x, 2δ); x ∈ S ⊆ X} of supp(µ) with the property
that the points in S have mutual distances at least 2δ. As {B(x, δ); x ∈ S ⊆ X} then consists
of pairwise disjoint sets, each carrying µ-mass at least mδ(X ), the total mass of µ is at least
mδ(X ) · #S. As µ is a finite measure, {B(x, 2δ); x ∈ S ⊆ X} must be a finite set. Since supp(µ)
is complete, this means that supp(µ) is actually compact. �

Lemma 3.5 (Characterization of Heine–Borel mm-spaces). Let X ∈ X. Then X is a
Heine–Borel locally finite measure space if and only if it satisfies the local lower mass-bound
property.

Proof. Given R > 0,X satisfies mR
δ (X ) > 0 for every δ > 0 if and only if X�R satisfies

the global lower mass-bound property. Hence by Lemma 3.4, X�R satisfies the global lower
mass-bound property if and only if X�R is compact. Obviously, X�R is compact for all R > 0 if
and only if X is Heine–Borel. �

Corollary 3.6 (XHB and Xc are Measurable). Both XHB and Xc are measurable subsets of X
with respect to Borel σ -field generated by the Gromov-vague topology.

Proof. Notice that

XHB =


R∈N


δ>0


a>0


X ∈ X : mR

δ (X ) ≥ a

, (3.6)
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by Lemma 3.5. Since the lower mass functions are upper semi-continuous by Lemma 3.2,
AR,δ,a := { X ∈ X : mR

δ (X ) ≥ a } is closed for all δ, R > 0. Hence XHB is measurable.
The measurability of Xc follows analogously by noticing that

Xc =


δ>0


a>0

{ X ∈ X : mδ(X ) ≥ a, µ(X) ≤ a−1
}, (3.7)

by Lemma 3.4. �

4. Embeddings, compactness and polishness

Recall that weak convergence of finite measures on a complete, separable metric space is
induced by the complete Prohorov metric (see, (2.6)). In the same spirit, the Gromov-weak
topology is induced by the complete Gromov–Prohorov metric, which is defined for two metric
finite measure spaces X = (X, r, µ) and X ′

= (X ′, r ′, µ′) by

dGP(X ,X ′) := inf
d

d(X⊔X ′,d)
Pr


µ,µ′


, (4.1)

where the infimum is taken over all metrics d on X ⊔ X ′ that extend both r and r ′, and ⊔ denotes
the disjoint union (see [20, Theorem 5]).

The fact that dGP induces the Gromov-weak topology immediately implies the following em-
bedding result: for every Gromov-weakly convergent sequence, ((Xn, rn, µn))n∈N, there exists
a common complete, separable metric space (E, d) in which all (Xn, rn) can be isometrically
embedded such that (the push-forwards of) the measures µn converge weakly to a measure µ on
(E, d) (compare [20, Lemma 5.8]).

In this section we show that an analogous statement (Proposition 4.1) is true for the Gromov-
vague topology and, if the sequence satisfies the local lower mass-bound, (E, d) can be chosen
as Heine–Borel space. We will apply this to characterize compact sets in X (Corollary 4.3),
and to show that X is Polish (Proposition 4.8), while Xc and XHB are Lusin spaces but not Polish
(Corollary 4.9). We also prove a tightness criterion for probability measures on X (Corollary 4.6).

We start with the embedding result.

Proposition 4.1 (Characterization via Isometric Embeddings). For each n ∈ N ∪ {∞}, let
Xn = (Xn, rn, ρn, µn) ∈ X. Then (Xn)n∈N converges to X∞ Gromov-vaguely if and only if there
exist a pointed complete, separable metric space (E, d, ρ) and isometries ϕn : supp(µn) → E
such that ϕn(ρn) = ρ for n ∈ N ∪ {∞}, and

(ϕn)∗µn

�Bd (R,ρ)

=⇒
n→∞


(ϕ∞)∗µ∞


�Bd (R,ρ)

, (4.2)

for all but countably many R ≥ 0. Furthermore, if { Xn : n ∈ N } satisfies the local lower
mass-bound property, then X∞ ∈ XHB and E can be chosen as Heine–Borel space. In this
case, (4.2) is equivalent to

(ϕn)∗µn
vag
−−→ (ϕ∞)∗µ∞, (4.3)

where
vag
−−→ denotes vague convergence of Radon measures on E.

Before we give the proof, we illustrate with an example that the local lower mass-bound
property cannot be dropped without replacement in the second part of the proposition, even if the
limit is assumed to be compact.
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Example 4.2 (E is not Heine–Borel Without Lower Mass-bound). Consider Xn =

[0, 1]

n, rn, 0,
n−1

n δ0n +
1
nλn


, where rn is the Euclidean metric, δ0n is the Dirac measure in 0n

= (0, . . . , 0) ∈

[0, 1]
n , and λn is the n-dimensional Lebesgue measure. Then Xn is compact and obviously

converges Gromov-vaguely (and Gromov-weakly) to the compact probability space consisting
of only one point, but the embedding space (E, d) cannot be chosen as Heine–Borel space. �

Proof of Proposition 4.1. It is easy to see that (4.2) implies the Gromov-vague convergence, and
that if E is a Heine–Borel space, (4.2) is equivalent to (4.3).

Conversely, assume that Xn −−−→
n→∞

X Gromov-vaguely, and abbreviate X := X∞, r := r∞

and ρ := ρ∞. Let (Rk)k∈N be an increasing sequence of radii with limk→∞ Rk = ∞ and
µ


Br (ρ, Rk) \ Br (ρ, Rk)


= 0. Using that the Gromov–Prohorov metric metrizes the Gromov-

weak topology by [20, Theorem 5], we can construct for n, k ∈ N a metric dn,k on Xn ⊔ X
extending both rn and r such that for all l ∈ {1, . . . , k},

lim
n→∞

d
(Xn⊔X,dn,k )

Pr


µn�Rl

, µ�Rl


= 0, (4.4)

where we use the abbreviation

µ�R := µ�Bd (ρ,R)
. (4.5)

It is easy to check that we can do it such that ρn and ρ are identified. Using Cantor’s diagonal
argument, we can find a subsequence (kn) such that dn := dn,kn satisfies limn→∞ d(Xn⊔X,dn)

Pr
(µn�Rk

, µ�Rk
) = 0, for every k ∈ N. Let E :=


n∈N∪{∞}

Xn, d the largest metric on E which
extends all dn , and ϕn : Xn → E the canonical injection. Then it is easy to check that (E, d) is a
complete, separable metric space and (4.2) is satisfied.

Now assume that { Xn : n ∈ N } satisfies the local lower mass-bound property. Then it is
also satisfied for


Xn : n ∈ N ∪ {∞}


by Corollary 3.3. Due to Lemma 3.5, we may assume

that Xn and X are Heine–Borel spaces. We have to show that E is a Heine–Borel space as well.
To this end, we show that every bounded sequence (xi )i∈N in E has an accumulation point. If
infinitely many xi are in a single Xn, n ∈ N ∪ {∞}, this follows from the Heine–Borel property
of Xn . Therefore, we can assume w.l.o.g. that xn ∈ Xn ∩ Bd(ρ, Rk) for all n and some k. By
(3.3) together with (µn)�Rk

⇒ µ�Rk
on E , we obtain d(xn, X) → 0. Hence there is yn ∈ X

with d(xn, yn) → 0 and, by the Heine–Borel property of X, (yn)n∈N has an accumulation point,
which is also an accumulation point of (xn)n∈N. �

From here we can easily characterize the relatively compact sets.

Corollary 4.3 (Gromov-vague Compactness). For a set K ⊆ X the following are equivalent:

1. K is relatively compact in X equipped with the Gromov-vague topology.
2. For all R > 0, the set of restrictions K�R :=


X�R : X ∈ K


is relatively compact in the

Gromov-weak topology.
3. K�Rk

is relatively compact in the Gromov-weak topology for a sequence Rk → ∞.

Furthermore, a set K ⊆ XHB which satisfies the local lower mass-bound property is relatively
compact in XHB equipped with Gromov-vague topology if and only if the total masses of large
balls are uniformly bounded, i.e., for all R > 0,

sup
(X,r,ρ,µ)∈K

µ

Br (ρ, R)


< ∞. (4.6)
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Remark 4.4 (Gromov-weak Compactness). Criteria for relative compactness in the Gromov-
weak topology are given in Theorem 2 and Proposition 7.1 of [20]. �

Remark 4.5 (Convergence Without the Lower-mass Bound Property). As we have seen in
Example 4.2, a Gromov-vaguely convergent sequence in XHB does not have to satisfy the local
lower mass-bound property. Hence the local lower mass-bound property is not necessary for
relative compactness in XHB. �

Proof of Corollary 4.3. “1⇒2” Assume that K is relatively compact. Let R > 0, and consider
a sequence


Xn = (Xn, rn, ρn, µn)


n∈N in K. Then it possesses a Gromov-vague limit point

X ∈ X, and, by passing to a subsequence, we may assume w.l.o.g. that Xn −−−→
n→∞

X Gromov-

vaguely. By Proposition 4.1, we can assume that Xn ⊆ E for some separable metric space
E , and µ′

n := µn�B(ρ,R′) =⇒
n→∞

µ�B(ρ,R′) =: µ′ for some R′ > R. By the Prohorov theorem,

the sequence (µ′
n)n∈N is tight. Thus


µn�B(ρ,R)


n∈N is also tight. We can conclude once more

with the Prohorov theorem that

µn�B(ρ,R)


n∈N is relatively weakly compact. Consequently,

(Xn�R)n∈N has a Gromov-weak limit point.

“2⇒3” is obvious.
“3⇒1” Let (Xn)n∈N be a sequence in K. By passing to a subsequence, we may assume that

Xn�Rk
converges Gromov-weakly to some metric finite measure space X (k) for all k. Now it is

easy to check that X (i)
= X (k)�Ri

whenever Ri ≤ Rk and that we can therefore construct X ∈ X
with X�Rk

= X (k) for every k ∈ N. By definition, Xn → X in Gromov-vague topology.
Now assume that K ⊆ XHB satisfies the local lower mass-bound property and (4.6). Fix

R > 0. Then for every ε > 0 we can find N = N (ε,K) ∈ N such that for every
X = (X, r, ρ, µ) ∈ K, we can cover Br (ρ, R) by N balls of radius ε. Hence K�R is relatively
compact in Gromov-weak topology by Proposition 7.1 of [20]. Therefore, K is relatively compact
in X with Gromov-vague topology. As also K satisfies the local lower mass-bound property by
Corollary 3.3, K ⊆ XHB by Lemma 3.5. �

Having a characterization of compactness at hand, we can also characterize tightness of
probability measures on X. Denote by Xfin the subspace of metric finite measure spaces.

Corollary 4.6 (Tightness of Measures on X). Let Γ be a family of probability measures on X,
and consider for each R > 0 the restriction map ψR : X → Xfin given by X → X�R . Then the
following are equivalent:

1. Γ is Gromov-vaguely tight.
2. The set (ψR)∗(Γ ) is Gromov-weakly tight for all R > 0.
3. For all R, ε > 0, there is a δ > 0 such that

sup
P∈Γ

P

(X, r, ρ, µ) ∈ X : µ


Br (ρ, R)


> 1

δ


≤ ε, (4.7)

sup
P∈Γ

P

(X, r, ρ, µ) ∈ X : µ


x ∈ Br (ρ, R) : µ(Br (x, ε)) ≤ δ


≥ ε


≤ ε.

Remark 4.7 (Gromov-weak Tightness). A characterization of Gromov-weak tightness of
probability measures of metric finite measures spaces is given in Theorem 3 in [20] (compare also
[20, Remark 7.2(ii)]). �
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Proof of Corollary 4.6. “only if” Assume that the family Γ is Gromov-vaguely tight. Then we
can find for all ε > 0 a compact set Kε with P(Kε) ≥ 1 − ε for all P ∈ Γ . In particular,
by Corollary 4.3, the sets Kε�R are Gromov-weakly relatively compact for all R > 0. Because
(ψR)∗(P)(Kε�R) ≥ P(Kε) ≥ 1 − ε for all P ∈ Γ , the set (ψR)∗(Γ ) is Gromov-weakly tight.

“if” Conversely if, for all ε, R > 0,Kε,R are Gromov-weakly compact sets satisfying
(ψR)∗(P)(Kε,R) ≥ 1 − ε, then for all ε > 0,Kε :=


X ∈ X : X�n ∈ K2−nε,n ∀n ∈ N


is

a Gromov-vaguely relatively compact set which satisfies P(Kε) ≥ 1 − ε for all P ∈ Γ .
The equivalence of (4.7) now follows from Theorem 3 in [20]. �

Constructing a complete metric on X that metrizes the Gromov-vague topology is now
standard.

Proposition 4.8 (X is Polish). The space X of metric boundedly finite measure spaces equipped
with the Gromov-vague topology is a Polish space.

Proof. One possible choice of a complete metric is

d#
GP


X ,Y


:=


R+

dR e−R
1 ∧ dGP(X�R,Y�R)


. (4.8)

Indeed, that d#
GP induces the Gromov-vague topology is shown in Lemma 2.6, and separability

is obvious. To see completeness, consider a Cauchy sequence (Xn)n∈N in X. Then Xn�R is a
Cauchy sequence with respect to dGP for Lebesgue-almost all R > 0. By completeness of
dGP, { Xn�R : n ∈ N } is relatively compact in the Gromov-weak topology for these R > 0.
By Corollary 4.3, this implies relative compactness of { Xn : n ∈ N } in the Gromov-vague
topology. Hence the sequence converges Gromov-vaguely. �

Unfortunately, the subspaces XHB and Xc are not Polish, and hence it is impossible to find
a complete metric inducing Gromov-vague topology on them. They are, however, Lusin spaces.
Recall that a metrizable topological space is, by definition, a Lusin space if it is the image of a
Polish space under a continuous, bijective map.

Corollary 4.9 (XHB and Xc are Lusin). The space XHB of Heine–Borel locally finite measure
spaces, equipped with the Gromov-vague topology, is a Lusin space but not Polish. The same is
true for the space Xc of compact metric finite measure spaces.

Proof. XHB and Xc are measurable subsets (Corollary 3.6) of the Polish space X. Hence they are
Lusin by Theorem 8.2.10 of [10].

To see that XHB is not Polish, note that it is a dense subspace of X, and using Lemma 3.5 we
see that its complement, X \ XHB, contains a countable intersection of open dense sets, namely
G :=


a>0, a∈Q


X ∈ X : m1

1(X ) < a

. Such a subspace cannot be Polish by standard

arguments (see also [31, Remark 4.7]), which we recall for the reader’s convenience. Assume
for a contradiction that XHB is Polish. By the Mazurkiewicz theorem [10, Theorem 8.1.4], it
is a countable intersection of open sets, XHB =


n∈N Un , say. Obviously, the Un have to be

dense, because XHB is. Now XHB ∩ G is also a countable intersection of open dense sets, hence
it is dense by the Baire category theorem [10, Theorem D.37]. This is a contradiction, because
G ⊆ X \ XHB.

The same reasoning also applies to Xc, hence Xc is also not Polish. �
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5. The Gromov–Hausdorff-vague topology

In this section we introduce with the Gromov–Hausdorff-vague topology a topology which is
stronger than the Gromov-vague topology. The need for such a topology can be motivated by
situations as in Example 4.2, and by the fact that there are sequences of finite measures (µn)n∈N
on a common compact space (E, d), such that µn ⇒ µ, as n → ∞, but their supports do
not converge. The convergence of supports, however, plays a crucial rôle for the convergence
of associated random walks to a Brownian motion on the limit space (see [5]). We define the
stronger topology based on isometric embeddings, discuss its connection to the related measured
(Gromov-)Hausdorff topology and to the Gromov–Hausdorff–Prohorov metric known from the
literature, state a stability result, and characterize compact sets. A main result of this section is
Polishness of the Gromov–Hausdorff-weak and -vague topologies (Propositions 5.5 and 5.12).
Interpreted in terms of the Gromov–Hausdorff–Prohorov metric as used in [34], this means that
the subspace of metric measure spaces with full support of the measure is Polish although it is
not closed (Corollary 5.6).

We cannot, of course, build such a strong notion of convergence on the notion of sampling
alone, and therefore rather use an isometric embedding approach (compare Proposition 4.1).
Recall that the Hausdorff distance between two closed subsets A, B of a metric space (E, d) of
bounded diameter is defined by

dH


A, B


:= inf


ε > 0 : Aε ⊇ B, and Bε ⊇ A


, (5.1)

where once more Aε := {x ∈ A : d(x, A) ≤ ε} denotes the closed ε-neighborhood of A. Recall
that Xfin denotes the space of metric finite measure spaces.

Definition 5.1 ((Pointed) Gromov–Hausdorff-weak Topology). Let for each n ∈ N∪{∞},Xn :=

(Xn, rn, ρn, µn) ∈ Xfin. We say that (Xn)n∈N converges to X∞ in Gromov–Hausdorff weak
topology if and only if there exists a pointed metric space (E, dE , ρE ) and, for each n ∈ N∪{∞},
an isometry ϕn : supp(µn) → E with ϕn(ρn) = ρE , and such that in addition to

(ϕn)∗µn =⇒
n→∞

(ϕ∞)∗µ∞, (5.2)

also

dH


ϕn


supp(µn)


, ϕ∞


supp(µ∞)


−−−→
n→∞

0. (5.3)

A very similar topology for compact metric measure spaces was first introduced in [17]
under the name measured Hausdorff topology (often referred to as measured Gromov–Hausdorff
topology) and further discussed in [16,34]. The definition of this topology is exactly the
same as that of the Gromov–Hausdorff-weak topology, except that supp(µn) is replaced by
Xn, n ∈ N ∪ {∞}. The consequence is that, when comparing compact metric measure spaces,
the geometric structure outside the support is taken into account, while it is ignored by our
definition. It is important to note that this leads to different equivalence classes, i.e., the measured
Hausdorff topology is not defined on Xc, but rather on a space of equivalence classes with respect
to the following equivalence relation. We say that two metric measure spaces (X, r, ρ, µ) and
(X ′, r ′, ρ′, µ′) are strongly equivalent if and only if there is a surjective isometry φ : X → X ′

such that φ(ρ) = ρ′ and φ∗(µ) = µ′. Define

Xc := { strong equivalence classes of compact metric measure spaces }. (5.4)
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it is well-known that the measured Hausdorff topology is induced by the so-called Gromov–
Hausdorff–Prohorov metric defined on Xc as follows. For X = (X, r, ρ, µ), X ′

=

(X ′, r ′, ρ′, µ′) ∈ Xc,

dGHP(X ,X ′) := inf
d

d(X⊔X ′,d)
Pr (µ,µ′)+ d(X⊔X ′,d)

H (X, X ′)+ d(ρ, ρ′), (5.5)

where the infimum is taken over all metrics d on X ⊔ X ′ that extend both r and r ′. Note that
(Xc, dGHP) is a complete, separable metric space (see [34, Proposition 8]).

Now we can easily identify Xc with the subspace of Xc that consists of all (strong equivalence
classes of) compact metric spaces with a measure of full support, i.e. with

X
supp
c :=


(X, r, ρ, µ) ∈ Xc : X = supp(µ)


, (5.6)

by choosing representatives with full support from the larger equivalence classes of Xc, i.e. via
the injective map

ι : Xc → X
supp
c , (X, r, ρ, µ) →


supp(µ), r, ρ, µ


. (5.7)

It is obvious that ι is a homeomorphism if we equip Xc with the Gromov–Hausdorff-weak and
X

supp
c with the measured Hausdorff topology. Its inverse ι−1 can naturally be extended to all of

Xc, but this extension looses continuity, as we show in the following remark.

Remark 5.2 (Support Projection). Equip Xc with the measured Hausdorff topology and Xc with
the Gromov–Hausdorff-weak topology. The support projection

π supp
: Xc → X

supp
c , (X, r, ρ, µ) →


supp(µ), r, ρ, µ


(5.8)

is an open map, but neither continuous nor closed. In particular, associating to a strong equiv-
alence class of metric measure spaces in Xc the corresponding equivalence class in Xc is not a
continuous operation, although it induces a homeomorphism from X

supp
c onto Xc.

Remark 5.3 (Full Support Assumption). The requirement that the measure on a metric space has
full support is not unnatural. It plays, for instance, a crucial rôle for defining Markov processes
via Dirichlet forms (a particular example is [5]), and is even included in the definition of “Radon
measure” in [18]. �

Note that X
supp
c is not closed in Xc, hence transporting the Gromov–Hausdorff–Prohorov

metric dGHP with ι back to Xc does not yield a complete metric. The following proposition shows,
however, that we can find a different, complete metric for the Gromov–Hausdorff-weak topology
on Xc. This also implies that, although (Xsupp

c , dGHP) is not complete, it can still be used as a
Polish state-space, because the induced topological space is Polish. To define the complete metric
on Xc, we use the global lower mass function mδ from (3.2), the Gromov–Hausdorff–Prohorov
metric dGHP from (5.5), and the homeomorphism ι from (5.7). Recall that mδ > 0 on Xc for
every δ > 0 by Lemma 3.4.

Definition 5.4. For X ,X ′
∈ Xc, let

dsGHP(X ,X ′) := dGHP

ι(X ), ι(X ′)


+

 1

0
dδ 1 ∧

 1
mδ(X )

−
1

mδ(X ′)

 . (5.9)

We call dsGHP the support Gromov–Hausdorff–Prohorov metric.
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Proposition 5.5 ((Xc, dsGHP) is a Complete Metric Space). The metric dsGHP induces the
Gromov–Hausdorff-weak topology on Xc. Furthermore, (Xc, dsGHP) is a complete, separable
metric space.

Proof. Let (Xn)n∈N and X be in Xc. Then mδ(X ) > 0, for all δ > 0. Thus by definition,
dsGHP(Xn,X ) −−−→

n→∞
0 if and only if

dGHP

ι(Xn), ι(X )


−−−→
n→∞

0, (5.10)

and for almost all δ > 0,

mδ(Xn) −−−→
n→∞

mδ(X ). (5.11)

Because ι is a homeomorphism, (5.10) is equivalent to the Gromov–Hausdorff-weak convergence
Xn −−−→

n→∞
X . We have to show that this already implies (5.11), i.e. that X is continuity

point of mδ w.r.t. Gromov–Hausdorff-weak topology for almost all δ > 0. To see this, recall
that mδ is upper semi-continuous w.r.t. Gromov-vague topology (Lemma 3.2), and a fortiori
also w.r.t. Gromov–Hausdorff-weak topology. Assume that all Xn = (Xn, rn, ρn, µn) and
X = (X, r, ρ, µ) are embedded in some common space (E, d, ρ) such that µn converges weakly
to µ and supp(µn) in Hausdorff metric to supp(µ). Then, for every δ̂ < δ and n sufficiently large,
every δ-ball around some y ∈ supp(µn) contains a δ̂-ball around some x ∈ supp(µ). Therefore,
lim infn→∞ mδ(Xn) ≥ m

δ̂
(X ). This means that mδ is Gromov–Hausdorff-weakly lower semi-

continuous in X for every δ > 0 with mδ(X ) = sup
δ̂<δ

m
δ̂
(X ). Because δ → mδ(X ) is an

increasing function, this is the case for almost all δ > 0. This means that (5.11) is implied
by Gromov–Hausdorff-weak convergence, and hence dsGHP induces Gromov–Hausdorff-weak
topology as claimed.

That (Xc, dsGHP) is a separable metric space is obvious, and it remains to show its complete-
ness. Consider a dsGHP-Cauchy sequence (Xn)n∈N in Xc. Then, by completeness of dGHP on Xc,
the sequence


ι(Xn)


n∈N converges in measured Hausdorff topology to some Y = (X, r, ρ, µ) ∈

Xc. We have to show Y ∈ ι(Xc) = X
supp
c . Assume for a contradiction that this is not the case,

i.e. there exists x ∈ X \ supp(µ). Then there is a δ > 0 with B(x, 2δ) ∩ supp(µ) = ∅. By the
measured Hausdorff convergence and the fact that ι(Xn) ∈ X

supp
c for all n, this clearly implies

mδ(Xn) −−−→
n→∞

0. This, however, cannot be the case because (Xn)n∈N is a Cauchy sequence

w.r.t. dsGHP. �

Corollary 5.6. The set X
supp
c of (strong equivalence classes of) compact metric full-support

measure spaces with the topology induced by the Gromov–Hausdorff–Prohorov metric dGHP is a
Polish space (although dGHP restricted to X

supp
c is not complete).

Corollary 5.7 (Gromov–Hausdorff-weak Compactness). A set K ⊆ Xc is relatively compact in
the Gromov–Hausdorff-weak topology if and only if the following hold

1. The set of the total masses is uniformly bounded, i.e.,

sup
(X,r,ρ,µ)∈Xc

µ(X) < ∞. (5.12)

2. For all ε > 0 there exists an NR,ε ∈ N such that for all (X, r, ρ, µ) ∈ K, supp(µ) can be
covered by NR,ε many balls of radius ε.

3. K satisfies the global lower mass-bound property.
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Proof. From Proposition 5.5, the definition of dsGHP, and the fact that dGHP induces the measured
Hausdorff topology, we see that K is Gromov–Hausdorff-weakly relatively compact if and only
if ι(K) is relatively compact in measured Hausdorff topology, and 1/mδ is bounded on K. The
latter is obviously equivalent to the global lower mass-bound 3. If K ⊆ X1, the measured
Hausdorff relative compactness of ι(K) is equivalent to 2 by [16, Proposition 2.4] together with
[8, Theorem 7.4.15]. It is therefore easy to see that it is in general equivalent to 2 together with 1
(compare [20, Remark 7.2(ii)]). �

In the same way as we used the Gromov-weak topology to define the Gromov-vague topology,
we also define the Gromov–Hausdorff-vague topology on X based on the Gromov–Hausdorff-
weak topology on Xfin.

Definition 5.8 ((Pointed) Gromov–Hausdorff-vague Topology). Let for each n ∈ N∪{∞},Xn :=

(Xn, rn, ρn, µn) be in X. We say that (Xn)n∈N converges to X∞ in Gromov–Hausdorff vague
topology if and only if (Xn)�R −−−→

n→∞
(X∞)�R Gromov–Hausdorff-weakly for all but countably

many R > 0.

The following embedding result and its corollary about Gromov–Hausdorff-vaguely compact
sets are proved in the same way as Proposition 4.1 and Corollary 4.3.

Proposition 5.9 (Isometric Embeddings; Gromov–Hausdorff–Prohorov Metric). Let for each
n ∈ N ∪ {∞}, Xn := (Xn, rn, ρn, µn) be in XHB. The following are equivalent:

1. Xn −−−→
n→∞

X∞, Gromov–Hausdorff vaguely.

2. There exists a rooted Heine–Borel space (E, dE , ρE ) and for each n ∈ N ∪ {∞} isometries
ϕn : supp(µn) → E with ϕn(ρn) = ρE , and such that in addition to (4.2), also

dH


ϕn(suppµn) ∩ BdE (ρE , R), ϕ∞(suppµ∞) ∩ BdE (ρE , R)


−−−→
n→∞

0, (5.13)

for all but countably many R > 0.
3. d#

sGHP(Xn,X∞) −−−→
n→∞

0, where for X ,X ′
∈ XHB,

d#
sGHP


X ,X ′


:=


dR e−R

1 ∧ dsGHP(X�R,X ′�R)

. (5.14)

Corollary 5.10 (Gromov–Hausdorff-vague Compactness). For a set K ⊆ X the following are
equivalent:

1. K is relatively compact in X equipped with the Gromov–Hausdorff-vague topology.
2. For all R > 0, the set of restrictions K�R :=


X�R : X ∈ K


is relatively compact in the

Gromov–Hausdorff-weak topology.
3. K�Rk

is relatively compact in the Gromov–Hausdorff-weak topology for a sequence Rk → ∞.

Remark 5.11 (Gromov–Hausdorff–Prohorov and Length Spaces). Under the name Gromov–
Hausdorff–Prohorov topology, the measured Hausdorff topology was recently extended in [1]
to the space of complete, locally compact length spaces equipped with locally finite measures.
The extension was done with the same localization procedure that we use. Note the following:
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1. Complete locally compact length spaces are Heine–Borel spaces and well suited for applica-
tions concerning R-trees. The assumption of being a length space and thereby path-connected,
however, is too restrictive in general. For example, in Theorem 1 of [5] we establish con-
vergence in path space of continuous time random walks on discrete trees to time-changed
Brownian motion on R-trees (appearing as the Gromov–Hausdorff-vague limit of the dis-
crete trees), where the underlying trees are encoded as metric spaces and jump rates and/or
time-changes are encoded by the so-called speed measure. Since we need the speed measure
to have full support, the situation is incompatible with a connectedness requirement.

2. In a general setting, the name Gromov–Hausdorff–Prohorov topology might be a bit mislead-
ing, as “Prohorov” suggests weak convergence, while the localized convergence is vague in
the sense that mass can get lost. Also note that, if we drop the assumption of being length
spaces, the localized convergence is not really an extension of measured Hausdorff conver-
gence any more (compare Remark 2.8). �

Proposition 5.12 (XHB with Gromov–Hausdorff-vague Topology is Polish). The space XHB
of Heine–Borel boundedly finite measure spaces equipped with the Gromov–Hausdorff-vague
topology is a Polish space.

Proof. We follow the proof of Proposition 4.8 and define

d#
sGHP


X ,Y


:=


R+

dR e−R
1 ∧ dsGHP(X�R,Y�R)


. (5.15)

We know from Proposition 5.9 that d#
sGHP induces the Gromov–Hausdorff-vague topology. Sep-

arability and completeness follow from the corresponding properties of dsGHP (Proposition 5.5)
and the compactness criterion given in Corollary 5.10, in the same way as in the proof of Propo-
sition 4.8. �

Even though the Gromov–Hausdorff-vague topology is nice (i.e. Polish) on XHB and defined
on all of X, it appears to be too strong to be useful on the larger space.

Remark 5.13 (Gromov–Hausdorff-vague Topology is Non-separable on X). The spaces X and
X1, equipped with the Gromov–Hausdorff-vague topology, are not separable. In particular they
are not Lusin spaces. Indeed, we can topologically embed the non-separable space l∞+ into X1
as follows: for n ∈ N and a ∈ R+, let An

a := {n} × [0, a]
n , and µn

a some measure on An
a with

full support and total mass 2−n . Define ψ : l∞+ → X1 by ψ(a) :=


n∈N An
an
, r, ρ,


n∈N µ

n
an


,

where ρ = (1, 0), and r is the supremum of the discrete metric on the first component and
the Euclidean metric on the second component. It is straightforward to check that ψ is a
homeomorphism onto its image. �

We know from Propositions 4.8, 5.5 and 5.12 that X with Gromov-vague topology, Xc with
Gromov–Hausdorff-weak topology, and XHB with Gromov–Hausdorff-vague topology are Pol-
ish spaces. Furthermore, it is known from [20, Theorem 1] that X1 and Xfin with Gromov-weak
topology are Polish. In the case of X1, this is also true for the Gromov-vague topology, although
X1 is not Gromov-vaguely closed in X (see Remark 2.8). On the other hand, Corollary 4.9 proves
that Xc and XHB with Gromov-vague topology are Lusin but not Polish. Similar arguments
also show that Xfin with Gromov-vague topology and Xc with Gromov-weak as well as with
Gromov–Hausdorff-vague topology are Lusin and not Polish. Gromov–Hausdorff-vague topol-
ogy is not even separable on X and X1 by Remark 5.13. We summarize the situation in Fig. 1.
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Fig. 1. The table shows topological properties of different spaces of metric measure spaces in different topologies.
Entries: “–” means not defined; “non-sep”. means non-separable; “Lusin” means Lusin but not Polish. Spaces: the
spaces are defined in Definition 2.2 and Remark 2.8. Topologies: Gv = Gromov-vague, Gw = Gromov-weak, GHv
= Gromov–Hausdorff-vague, GHw = Gromov–Hausdorff-weak.

We conclude this section with the following stability property, which is the analogue of
Lemma 2.9. It is an immediate consequence of the definition of the Gromov–Hausdorff-vague
topology by means of isometric embeddings. The proof follows the same lines as the proof of
Lemma 2.9 and is therefore omitted.

Lemma 5.14 (Perturbation of Measures). Consider X = (X, r, ρ, µ), Xn = (Xn, rn, ρn, µn) ∈

X, and another boundedly finite measure µ′
n on Xn, n ∈ N. Assume that Xn −−−→

n→∞
X

Gromov–Hausdorff-vaguely, and that there exists a sequence Rk → ∞ such that for all k ∈ N,

d(Xn ,rn)
Pr


µn�Rk

, µ′
n�Rk


−−−→
n→∞

0, and d(Xn ,rn)
H


supp(µn�Rk

), supp(µ′
n�Rk

)


−−−→
n→∞

0.

(5.16)

Then (Xn, rn, ρn, µ
′
n) converges Gromov–Hausdorff-vaguely to X .

Example 5.15 (Normalized Length Measure Versus Degree Measure). Consider a graph
theoretic tree T ′ which is locally finite, i.e. deg(v) < ∞ for all v ∈ T ′, where deg is the degree
of a node. Equip T ′ with the graph distance r ′, i.e. the length of the shortest path, and fix a root
ρ′

∈ T ′. Recall the notion of R-tree from Example 2.3. It is well known that (T ′, r ′) can be
embedded isometrically into a complete, locally compact R-tree (T, r) in an essentially unique
way. Denote the image of ρ′ by ρ and the image of T ′ by nod(T ). On T ′, we consider two natural
measures. The node measure µnod

T ′ , which is just the counting measure on the nodes (except the

root), and the degree measure µdeg
T ′ , which is proportional to the degree of the node. The push-

forwards on T are given by

µnod
T :=


x∈nod(T )\{ρ}

δx and µ
deg
T :=

1
2


x∈nod(T )

deg(x) · δx . (5.17)

Note that (T ′, r ′, ρ′, µ
deg
T ′ ) ∼= (T, r, ρ, µdeg

T ), and similarly for the node measure. On T , there is
also a third natural measure, namely the length measure λ = λ(T,r), which is the 1-dimensional
Hausdorff measure on T \ lf(T ), where lf(T ) = { x ∈ T : T \ {x} is connected } is the set of
leaves of T . Note that λ(T,r)(T ) = µnod

T (T ) = µ
deg
T (T ).

Now consider a sequence (T ′
n)n∈N of locally finite, graph theoretic trees, and the rooted

R-trees (Tn, rn, ρn) constructed as above. We assume that there are two sequences (αn)n∈N and
(βn)n∈N of positive numbers, both of which converge to 0, such that

Tn, αnrn, ρn, βnλ(Tn ,rn)


−−−→
n→∞

X , (5.18)

Gromov–Hausdorff-vaguely for some X = (T, r, ρ, µ) ∈ XHB, which is necessarily an R-tree.
Such a convergence can often be deduced via convergence of excursions, see Proposition 7.5 and
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Example 7.6. We claim that in this case, the length measure can be replaced by the degree mea-
sure or the node measure, i.e. that (5.18) implies the Gromov–Hausdorff-vague convergences

Tn, αnrn, ρn, βnµ
deg
Tn


−−−→
n→∞

X and

Tn, αnrn, ρn, βnµ

nod
Tn


−−−→
n→∞

X . (5.19)

Indeed, we have supp(µnod
Tn
) = supp(µdeg

Tn
) = nod(Tn), supp(λ(Tn ,rn)) = Tn and, for every

R > 0,

dH


nod(Tn) ∩ B(ρn, R), B(ρn, R)


≤ αn −−−→

n→∞
0. (5.20)

For the Prohorov distance, assume first that the diameter of Tn is smaller than R. Then

d(Tn ,rn)
Pr (µ

deg
Tn
, λ(Tn ,rn)) ≤

1
2αn and d(Tn ,rn)

Pr (µnod
Tn
, λ(Tn ,rn)) ≤ αn . (5.21)

In the general case, we have to take boundary effects into account. Using the annulus Sε(ρn, R)
:= B(ρn, R +

1
2ε) \ B(ρn, R −

1
2ε), we obtain

d(Tn ,rn)
Pr (µ

deg
Tn

�R, λ(Tn ,rn)�R) ≤
1
2αn ∨ βn · λ(Tn ,rn)


Sαn (ρn, R)


, (5.22)

and a similar estimate for µnod
Tn

instead of µdeg
Tn

. Using (5.18) we see that βnλ(Tn ,rn)


Sαn (ρn, R)


tends to zero for all R with µ


S(ρ, R)


= 0. Therefore the claimed Gromov–Hausdorff-vague

convergences (5.19) follow from (5.22), (5.20) and Lemma 5.14. �

6. Closing the gap

In this section we prove the main criterion for convergence in Gromov–Hausdorff-vague
topology. We shall use notation used in (1.2), (1.3) and the definitions of the lower mass functions
mR
δ and mδ from (3.1) and (3.2), respectively.
In order for a sequence


Xn


n∈N :=


Xn, rn, ρn, µn


n∈N of compact metric finite measure

spaces to converge in Gromov–Hausdorff-weak topology to a space X = (X, r, ρ, µ) ∈ Xc,
it certainly has to converge in the weaker Gromov-weak topology. This is a kind of “finite-
dimensional convergence”, which is expressible in terms of sampling finite sub-spaces:

1. For all k ∈ N, and ϕ ∈ C̄(R


k+1
2


+ )

µ⊗k
n (d(xn

1 , . . . , xn
k )) ϕ


(rn(x

n
i , xn

j ))0≤i< j≤k


−−−→
n→∞


µ⊗k(d(x1, . . . , xk)) ϕ


(r(xi , x j ))0≤i< j≤k


(6.1)

where we put xn
0 := ρ and x0 := ρ.

We show in Theorem 6.1 that, given 1, Gromov–Hausdorff-weak convergence follows from a
simple “tightness condition”, which is given in terms of the lower mass function:

2. For all δ > 0, lim infn→∞ mδ(Xn) > 0.

Note that for checking 1 and 2, we do not have to find any embedding into a common metric
space. We actually show that 1 and 2 together are even equivalent to Gromov–Hausdorff-weak
convergence, and this characterization even holds if the Xn are not compact (but X is).
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Theorem 6.1 (Gromov-weak Versus Gromov–Hausdorff-weak Convergence). Let X =

(X, r, ρ, µ) and Xn = (Xn, rn, ρn, µn), n ∈ N, be metric finite measure spaces. Then the
following are equivalent.

1. (Xn)n∈N converges in Gromov-weak topology to X , and for all δ > 0,

lim inf
n→∞

mδ(Xn) > 0. (6.2)

2. X is compact, and (Xn)n∈N converges in Gromov–Hausdorff-weak topology to X .

If Xn is compact for all n ∈ N, the following is also equivalent:

3. (Xn)n∈N converges in Gromov-weak topology to X , and { Xn : n ∈ N } satisfies the global
lower mass-bound property (Definition 3.1).

Proof. “2⇒1” Assume (supp(µn), rn, ρn, µn) −−−→
n→∞

(supp(µ), r, ρ, µ) Gromov–Hausdorff-

weakly. W.l.o.g. we may assume that X = supp(µ), Xn = supp(µn), and that Xn and X are
embedded into a complete, separable metric space (E, d) such that

d(E,d)Pr


µn, µ


−−−→
n→∞

0, and d(E,d)H


Xn, X


−−−→
n→∞

0. (6.3)

Furthermore let (X, r) be compact. We need to show (6.2). Assume to the contrary that there
exist δ > 0 and xn ∈ Xn such that lim infn→∞ µn


B(xn, 2δ)


= 0. Due to (6.3) we can find

yn ∈ X with d(xn, yn) −−−→
n→∞

0. Moreover by (6.3),

lim inf
n→∞

µ

B(yn, δ)


≤ lim inf

n→∞
µn


B(xn, 2δ)


= 0. (6.4)

As X is compact, we may assume w.l.o.g. that yn converges to some y ∈ X . Then µ

B(y, δ)


≤

lim infµ

B(yn, δ)


= 0, which contradicts X = supp(µ).

“1⇒2” Assume that Xn −−−→
n→∞

X Gromov-weakly, and w.l.o.g. that X = supp(µ), Xn =

supp(µn), and that Xn and X are embedded into a complete, separable metric space (E, d) such
that d(E,d)Pr


µn, µ


−−−→
n→∞

0, and that (6.2) holds. Then, for all ε > 0, we can find n0 = n0(ε) ∈ N
such that for all n ≥ n0,

d(E,d)Pr


µn, µ


< ε ∧ inf

y∈Xn
µn


B(y, ε)


∧ inf

x∈X
µ


B(x, ε)


, (6.5)

where we used that

inf
x∈X

µ

B(x, ε)


≥ lim inf

n→∞
inf

y∈Xn
µn


B(y, 1

2ε)

> 0. (6.6)

Then, for all y ∈ Xn, B(y, ε) ∩ Xε ≠ ∅, and thus also B(y, 2ε) ∩ X ≠ ∅. Similarly,
B(x, 2ε) ∩ Xn ≠ ∅ for all x ∈ X , and hence d(E,d)H (Xn, X) ≤ 2ε.

Compactness of X follows directly from (6.6) and Lemma 3.4.

“3⇔1” Obviously, the global lower mass-bound is equivalent to (6.2) together with mδ(Xn) >

0 for all n ∈ N and δ > 0. The last condition is satisfied for compact spaces by Lemma 3.4. �

The following corollaries are now obvious.

Corollary 6.2 (Gromov-vague Versus Gromov–Hausdorff-vague Convergence). Let X =

(X, r, ρ, µ) and Xn = (Xn, rn, ρn, µn), n ∈ N, be metric boundedly finite measure spaces.
Then the following are equivalent.
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1. (Xn)n∈N converges in Gromov-vague topology to X , and for all δ > 0 and R > 0,

lim inf
n→∞

mR
δ (Xn) > 0. (6.7)

2. supp(µ) is Heine–Borel, and

supp(µn), rn, µn


n∈N converges in Gromov–Hausdorff-vague

topology to

supp(µ), r, µ


.

If Xn is Heine–Borel for all n ∈ N, the following is also equivalent:

3. (Xn)n∈N converges in Gromov-vague topology to X , and { Xn : n ∈ N } satisfies the local
lower mass-bound property (3.3).

Corollary 6.3 (Polish Subspaces). Let K ⊆ XHB be a space of Heine–Borel locally finite
measure spaces satisfying the local lower mass-bound property (3.3). Then its closure K in
X (w.r.t. the Gromov-vague topology) is a Polish subspace of XHB. Furthermore, the Gromov-
vague topology and the Gromov–Hausdorff-vague topology coincide on K .

Corollary 6.4 (Topologies Agree up to Exceptional Sets). Let X = (X, r, ρ, µ) and Xn =

(Xn, rn, ρn, µn), n ∈ N, be in X. Then the following are equivalent:

1. Xn −−−→
n→∞

X , Gromov-vaguely.

2. For each n ∈ N there is An ⊆ Xn such that µn(An ∩ Brn (ρn, R)) −−−→
n→∞

0 for all R > 0, and
Xn \ An, rn, ρn, µn�Xn\An


−−−→
n→∞

X , (6.8)

Gromov–Hausdorff-vaguely.
3. For each n ∈ N there is An ⊆ Xn such that µn(An ∩ Brn (ρn, R)) −−−→

n→∞
0 for all R > 0, and

(6.8) holds Gromov-vaguely.

7. Application to trees coded by excursions

In this section we consider encodings of trees by means of excursions. To be in a position
to consider locally compact rather than just compact R-trees we consider possibly transient
excursions, and conclude from uniform convergence on compacta of a sequence of excursions
that the corresponding rooted boundedly finite R-trees converge Gromov–Hausdorff-vaguely
(Proposition 7.5). As an example we present a representation of the scaling limit of a size-biased
Galton–Watson tree (Example 7.6).

Definition 7.1 ((Transient) Excursions). A continuous function e : R+ → R+ is called
(continuous) excursion if e(0) = 0 and e is not identically 0. We refer to ζ(e) := sup


s >

0 : e(s) > 0


as the excursion length, and to Ie := [0, ζ(e)) as the excursion interval. If the
excursion length is finite, we call the excursion compactly supported. If lims→∞ e(s) = ∞, the
excursion is called transient.

Let

E :=

e : R+ → R+

 e is a continuous excursion

. (7.1)

Given e ∈ E , we define the pseudo-metric r ′
e by letting for all 0 ≤ s ≤ t < ζ(e),

r ′
e(s, t) := e(s)+ e(t)− 2 inf

u∈[s,t]
e(u). (7.2)

We write s ∼e t if r ′
e(s, t) = 0. Obviously, s ∼e t is an equivalence relation.
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Definition 7.2 (Glue Map). The glue map g : E → X sends an excursion to the complete,
separable, rooted measure R-tree

g(e) := (Te, re, ρe, µe), (7.3)

where Te := Ie/∼e, and re, µe, ρe are the push-forwards of r ′
e, the Lebesgue measure λIe , and

0, respectively, under the canonical projection πe : Ie → Te.

Lemma 7.3 (Excursions and Associated R-trees). Let e ∈ E .

1. If e is compactly supported, then g(e) is a pointed compact finite measure R-tree, i.e. g(e) ∈

Xc.
2. If e is transient, then g(e) is a pointed Heine–Borel boundedly finite measure R-tree,

i.e. g(e) ∈ XHB.
3. If e is neither compactly supported nor transient, then g(e) ∉ XHB.

Proof. 1. Follows from Lemma 3.1 in [16].
2. Assume that e is transient. Then for all R > 0, ξe(R) := sup{s ≥ 0 : e(s) < R} < ∞, and

AR :=


s ∈ [0,∞) : e(s) ≤ R


is a closed subset of [0, ξe(R)], and hence compact. Note
that continuity of e implies continuity of the projection πe. Therefore, B(ρ, R) = πe(AR) is
also compact. Moreover, µe


B(ρ, R)


≤ ξ(R) < ∞. As any closed and bounded subset of

(Te, re) is a closed subset of a closed ball B(ρ, R) for some R > 0, it is compact as well.
Thus g(e) ∈ XHB.

3. Assume that e is such that ζ(e) = ∞ but a := lim inft→∞ e(t) < ∞, and define
b := lim supt→∞ e(t). In the case b > a, (Te, re) is not Heine–Borel (and therefore not
locally compact). Indeed, there is an ε > 0 with a + 3ε < b, and an increasing sequence (tn)
in R+ with e(tn) ∈ [a + 2ε, a + 3ε] and infu∈[tn ,tn+1] e(u) ≤ a + ε for all n ∈ N. This means
that xn := πe(tn) defines a sequence of points in B(ρ, a + 3ε) with mutual distances at least
ε. In the case b = a,

µe

B(ρ, b + 1)


= λ


s ∈ R+ : e(s) ≤ b + 1


= ∞, (7.4)

which means that µe is not boundedly finite. In both cases g(e) ∉ XHB. �

Denote the space of continuous, transient excursions on R+ by

Etrans :=

e : R+ → R+

 e is continuous, e(0) = 0, lim
x→∞

e(x) = ∞

, (7.5)

and let for e ∈ Etrans and R > 0,

ξe(R) := sup{s ≥ 0 : e(s) < R} < ∞ (7.6)

denote the last visit to height R > 0.

Remark 7.4 (R-trees Under Transient Excursions). Let e ∈ Etrans. Then g(e) is a Heine–Borel
boundedly finite measure R-tree with precisely one end at infinity, i.e., there is a unique isometry
ϕ : [0,∞) → Te with ϕ(0) = ρe. Indeed, the map ϕe := πe ◦ ξe is such an isometry. Assume that
ψ is a further such isometry and fix R > 0. We show that ψ(R) = ϕe(R). Choose t ∈ R+ with
πe(t) = ψ(R). Because ψ is an isometry, we have e(t) = R, and consequently t ≤ ξe(R).
Choose S > supu∈[0,ξe(R)] e(u) and s ∈ π−1

e


ψ(S)


. Note that s > ξe(R) and e(s) = S.

Therefore S − R = re

ψ(S), ψ(R)


= S + R − 2 infu∈[t,s] e(u), and hence infu∈[t,ξe(R)] e(u) ≥

infu∈[t,s] e(u) = R. This implies re

ψ(R), ϕe(R)


= 2R − infu∈[t,ξe(R)] e(u) = 0. �
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Proposition 7.5 (Continuity of Glue Map). The glue map g : Etrans → XHB is continuous if
Etrans is equipped with the topology of uniform convergence on compacta, and XHB with the
Gromov–Hausdorff-vague topology.

Proof. Let (en)n∈N and e in Etrans be such that en −−−→
n→∞

e uniformly on compacta. Put

W+ := {R ≥ 0 : λ{s ≥ 0 : e(s) = R} > 0}. Standard arguments show that W+ is at
most countable. Recall ξe(R) from (7.6) and note that for all R > 0, the map e → ξe(R) is
continuous with respect to the uniform topology on compacta. Thus for all R ∈ [0,∞) \ W+,

en�[0,ξen (R)]
−−−→
n→∞

e�[0,ξe(R)], (7.7)

which in turn implies that g(en)�R → g(e)�R Gromov–Hausdorff-weakly (see, for
example, [2, Proposition 2.9]). Therefore g(en) −−−→

n→∞
g(e) Gromov–Hausdorff-vaguely by

Definition 5.8. �

We illustrate the usefulness of Proposition 7.5 with an example about the scaling limit of a
size-biased branching tree (compare [26,19] for a probabilistic representation of this tree).

Example 7.6 (Kallenberg–Kesten Tree). Consider a (discrete time) Galton–Watson tree with
a finite variance, mean 1 offspring distribution p = (pn)n∈N0 . Let T ′ be the so-called
Kallenberg–Kesten tree, which is a random graph theoretic tree that is distributed like this
Galton–Watson tree conditioned on survival. The simple, nearest neighbor random walk on T ′,
and scaling limits thereof, are of interest because of the “subdiffusive” behavior (see [27,6]).
The random walk is associated to the degree measure, defined in Example 5.15, as “speed mea-
sure” (see [5, Section 7.4]). As in Example 5.15, we construct the (equivalent) rooted, measured
R-tree (T, r, ρ, µdeg

T ), corresponding to T ′. In the particular case of a geometric offspring distri-
bution, i.e., pn := 2−(1+n) for all n ∈ N0, we can code the tree with the length measure instead
of the degree measure as follows:

(T, r, ρ, λ(T,r))
L
= g(W̃ ), (7.8)

where
L
= denotes equivalence in law and, for all t ≥ 0, W̃t := Wt − 2 infs∈[0,t] Ws , with a simple

random walk path (Wn)n∈N linearly interpolated. We refer to T geom(1/2)
K := (T, r, ρ, µdeg

T ) as the
discrete Kallenberg tree with geometric offspring distribution.

As W converges, after Brownian rescaling, weakly in path space towards standard Brownian
motion B, we have

n−1W̃n2t


t≥0 =⇒
n→∞


B̃t


t≥0, (7.9)

where B̃t := Bt − 2 infs∈[0,t] Bs . It is shown in [35] that (B̃t )t≥0 equals in law the unique strong
solution of the stochastic differential equation

X t :=
1
X t

dt + dBt , t > 0, X0 = 0. (7.10)

Note that this solution is a three dimensional Bessel process (i.e. the radial path of a three dimen-
sional Brownian motion). We refer to g(X) as the continuum Kallenberg–Kesten tree, TK.

Because, almost surely, a realization e := n−1W̃n2· has slope ±n almost everywhere, we have
µe = n−1λ(Te,re). Hence, by Proposition 7.5, (7.9) implies

(T, n−1r, ρ, n−2λ(T,r))
L
= g


n−1W̃n2·


=⇒
n→∞

g(X) = TK, (7.11)
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Gromov–Hausdorff-vaguely. By Example 5.15, this also implies

(T, n−1r, ρ, n−2µ
deg
T ) =⇒

n→∞
TK, (7.12)

Gromov–Hausdorff-vaguely. In words, if we consider the discrete Kallenberg–Kesten tree and
rescale the edge length to become n−1, and then equip it with the measure which assigns
mass 1

2 n−2 deg(x) to each branch point x , then this discrete measure tree converges weakly
with respect to the Gromov–Hausdorff-vague topology to the continuum Kallenberg–Kesten
tree. This implies that the simple, nearest neighbor random walk on the rescaled discrete
Kallenberg–Kesten tree converges, if sped up by a factor of n3, to the Brownian motion on TK,
according to Theorem 1 of [5]. See also Section 7.4 there. �
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in: Lecture Notes in Mathematics, vol. 1920, Springer-Verlag, 2008.

http://refhub.elsevier.com/S0304-4149(16)00040-5/sbref23
http://refhub.elsevier.com/S0304-4149(16)00040-5/sbref24
http://arxiv.org/1409.1014
http://refhub.elsevier.com/S0304-4149(16)00040-5/sbref26
http://refhub.elsevier.com/S0304-4149(16)00040-5/sbref27
http://refhub.elsevier.com/S0304-4149(16)00040-5/sbref28
http://refhub.elsevier.com/S0304-4149(16)00040-5/sbref29
http://refhub.elsevier.com/S0304-4149(16)00040-5/sbref30
http://refhub.elsevier.com/S0304-4149(16)00040-5/sbref31
http://refhub.elsevier.com/S0304-4149(16)00040-5/sbref32
http://refhub.elsevier.com/S0304-4149(16)00040-5/sbref33
http://refhub.elsevier.com/S0304-4149(16)00040-5/sbref34
http://refhub.elsevier.com/S0304-4149(16)00040-5/sbref35
http://refhub.elsevier.com/S0304-4149(16)00040-5/sbref36

	The gap between Gromov-vague and Gromov--Hausdorff-vague topology
	Introduction
	The Gromov-vague topology
	The lower mass-bound property
	Embeddings, compactness and polishness
	The Gromov--Hausdorff-vague topology
	Closing the gap
	Application to trees coded by excursions
	References


