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Preface

An initial set of notes - essentially containing three of the first four chapters
of this book - was prepared when such a course was given by the second
author at the ‘Mathematics Training and Talent Search Programmee’ at the
Fergusson College, Pune in 1993. These notes were re-used subsequently in
courses given to students at the ‘NURTURE’ programme at the Institute of
Mathematical Sciences (IMSc), as well as in a ‘core course’ on real analysis
at IMSc. Later, when the second author had to give a variant of this course
to beginning graduate students at the Chennai Mathematical Institute, some
‘analysis’ - meaning some basic material about L

p spaces, absolute continuity,
etc. - seemed to be called for; and this was the genesis of parts of the last
chapter of this book.

When it was subsequently suggested that there should be a serious ‘prob-
ability component’ to the book, for it to be useful, the first author was ap-
proached with the plea that he might help modify the book so that this lacuna
might be rectified to some extent; and chapters 3, 5 and 6 were the result. The
‘Appendix’ was included almost as a second thought, with the hope that it
may be a source for the ‘uniniated student’ to fill in some possible gaps in the
prerequisites needed for reading this book. This appendix has been ‘lifted’
verbatim from an appendix written for similar reasons for the book [Sun].
The authors plead guilty to having yielded to the temptation of the ease and
convenience of the ‘cut-and-paste option’ offered by word-processing; more
importantly, they are very grateful to Rajendra Bhatia and the TRIM series
for kindly granting the permission necessary to so ‘lift’ this material.

It is hoped that this book could be read by anybody with a bachelor’s de-
gree in Mathematics. Even this ‘requirement’ is not necessary if the prospec-
tive reader is blessed with a ‘modicum of mathematical maturity’; an appendix
has been supplied for precisely such a reader. We believe the entire contents of
this book could be very comfortably covered in a two-semester course, while
a reasonable one-semester course can be fashioned by selecting appropriate
parts of the book according to the need of the student (or taste of the instruc-
tor).



VIII Preface

The first chapter sets as its goal the construction of Lebesgue measure.
After a brief discussion of the need for restricting oneself to a suitable class of
‘measurable sets’, we get down to definitions and basic properties of abstract
σ-algebras (as well as algebras and monotone classes) of subsets of a given uni-
versal set Ω, and pass to measures defined on such algebras; the fundamental
Caratheodory extension theorem is then stated and proved. Finally the exis-
tence (and uniqueness) of Lebesgue measure is deduced, and the existence of
‘non-Lebesgue-measurable’ sets demonstrated.

The second chapter begins by discussing measurable functions, and then
establishes the fundamental proposition regarding approximability of positive
measurable functions by simple functions; and goes on to then define the
‘Lebesgue’ integral of appropriate functions, and derive such basic results as
the monotone and dominated convergence theorems, Fatou’s lemma, etc; the
chapter ends with a brief discussion of the notion ‘almost everywhere’.

The third chapter introduces the reader to the probabilistic terminology
and approach: to start with, the terminology of a random variable (on an ab-
stract probability space) and its distribution (the ‘push-forward’ probability
measure defined on the Borel subsets of the real line) are discussed. The crucial
notion of ‘(stochastic) independence’ of events (or random variables) is intro-
duced, and the Borel-Cantelli Lemma and Kolmogorov Zero-One Law’ proved.
Some of the more standard distributions - both discrete (Bernouilli, Binomial,
Poisson, etc.) and continuous (Uniform, Normal, etc.) - are decsribed. And a
final section is devoted to conditional expectations and probabilities.

The common link running through the fourth chapter is ‘measures on prod-
uct spaces’. Section 4.1 proves the existence of products of σ-finite measures
on arbitrary spaces, and goes on to prove the fundamental theorems of Tonelli
and Fubini. The next section connects product measures and independent ran-
dom variables through the notion of their ‘joint-distribution’ (an appropriate
‘push-forward measure’). Section 4.3 is devoted to (vacuously) applying the
Caratherodory extension theorem to construct interesting examples of prob-
ability measured on arbitrary products of finite sets, and paves the way for
Markov chains (at least in the case of finite state space). Section 4.4 is a quick
discussion of Kolmogorov’s consistency theorem, and the exercises here intro-
duces the reader to ‘transition probability measures’ and ‘Markov processes’
in general, as well as the ‘standard Brownian motion’ in particular.

The fifth chapter is devoted to proving two cornerstones of probability the-
ory, viz., the Central Limit Theorem and the Law of Large Numbers. The first
two sections pave the way with preliminary results - such as uniqueness and
inversion theorem for ‘characteristic functions (or Fourier transforms) of dis-
tributions’, and theorems of Slutsky, Skorohod, Polya and Scheffe on relations
between various modes of convergence. Section 5.3 proves the Central Limit
Theorem (for i.i.d. random variables with finite variance), after preparing the
ground with the conitnuity theorem which lists reformulations of convergence
in distribution. The final Section 5.4 derives the Strong Law of Large Numbers
from an auxiliary result to the effect that the ‘sample means’ of a sequence
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of stationary random variables with finite moment converge almost surely to
the conditional expectation with respect to the ‘invariant σ-algebra’.

The sixth chapter focuses on discrete time Markov chains on countable
state spaces. We begin with an introduction to the basic notions of aperiod-
icity, irreducibility, transience, reccurence and stationarity. We then proceed
to prove the two main limit theorems in the area - namely, convergence to
stationarity for aperiodic irreducible chains and the renewal theorem. We also
explicitly exhibit, following [FW] the stationary measure for an irreducible
finite state space Markov chain. We conclude with a discussion of recurrence
and transience properties for birth-death and queueing chains.

The seventh chapter addresses various topics typically covered in early
graduate courses in analysis. Section 7.1 addresses ‘finite complex measures’
(as well as finite real measures, traditionally called signed measures), and
establishes that such measures are necessarily of ‘finite total variation’ and
are expressible as linear combinations of finite positive measures. Section 7.2,
devoted to L

p-spaces, establishes Hölder’s inequality and the fact that L
p-

spaces are Banach spaces. The Radon Nikodym theorem is proved (following
von Neumann) in Section 7.3, and then used to prove the duality among L

p-
spaces corresponding to conjugate indices, as well as the Hahn decomposition
of signed measures, and Lebesgue-Nikodym theorem. Section 7.4 is a brief
digression into the ‘change of variables formula’, while Section 7.5 establishes
classical results such as the fundamental theorem of calculus (for absolutely
continuous functions). Finally, Section 7.6 is concerned with the Riesz Repre-
sentation Theorem which is stated and proved in three flavours: the compact
metric case, the general compact Hausdorff case, and finally the locally com-
pact Hausdorff case.

Most of the topics covered here are ’standard fare’, but several proofs of
‘standard theorems’ are possibly unusual and not too ‘standard’. This com-
ment might apply to our treatment of the following results: the Strong Law of
Large Numbers (see Theorem 5.4.4), the Hahn decomposition of signed mea-
sures (Proposition 7.3.7), and the Riesz Representation Theorem (Theorems
7.6.1, 7.6.7, 7.6.9). To be entirely honest, however, we learnt later that V.S.
Varadarajan had also constructed a proof of the Riesz Representation Theo-
rem which, like ours, is based on the Hahn-Banach Theorem; unfortunately
that proof appeared long ago and in a not very easily located journal. Simi-
larly, our proof of SLLN was based on a lecture by Michael Keane which the
first author heard, and the basic idea of the proof can be found in [Kea].
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