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Abstract. We study the ergodic behavior of systems of particles performing independent
random walks, binary splitting, coalescence and deaths. Such particle systems are dual to
systems of linearly interacting Wright-Fisher diffusions, used to model a population with
resampling, selection and mutations. We use this duality to prove that the upper invariant
measure of the particle system is the only homogeneous nontrivial invariant law and the limit
started from any homogeneous nontrivial initial law.
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1. Introduction and Main Results

1.1. Introduction

This paper studies systems of particles subject to a stochastic dynamics with the
following description. 1◦ Each particle moves independently of the others accord-
ing to a continuous time Markov process on a lattice �, which jumps from site
i to site j with rate a(i, j). 2◦ Each particle splits with rate b ≥ 0 into two new
particles, created on the position of the old one. 3◦ Each pair of particles, present on
the same site, coalesces with rate 2c (with c ≥ 0) to one particle. 4◦ Each particle
dies with rate d ≥ 0. Throughout this paper, we make the following assumptions.

(i) � is a finite or countably infinite set.
(ii) The transition rates a(i, j) are irreducible, i.e., if � ⊂ � is neither � nor ∅,

then there exist i ∈ � and j ∈ �\� such that a(i, j) > 0 or a(j, i) > 0.
(iii) supi

∑
j a(i, j) < ∞.

(iv)
∑
j a

†(i, j) = ∑
j a(i, j), where a†(i, j) := a(j, i).

(v) b, c, and d are nonnegative constants.

Here and elsewhere sums and suprema over i, j always run over �, unless stated
otherwise. Assumption (iv) says that the counting measure is an invariant σ -finite
measure for the Markov process with jump rates a. With respect to this invariant
measure, the time-reversed process jumps from i to j with rate a†(i, j).

Let Xt(i) denote the number of particles present at site i ∈ � and time t ≥ 0.
Then X = (Xt )t≥0, with Xt = (Xt (i))i∈�, is a Markov process with formal gen-
erator

Gf (x) :=
∑

ij

a(i, j)x(i){f (x + δj − δi)− f (x)} + b
∑

i

x(i){f (x + δi)− f (x)}

+c
∑

i

x(i)(x(i)− 1){f (x − δi)− f (x)} + d
∑

i

x(i){f (x − δi)− f (x)},
(1.1)

where δi(j) := 1 if i = j and δi(j) := 0 otherwise. The process X can be defined
for finite initial states and also for some infinite initial states in an appropriate
Liggett-Spitzer space (see Section 1.3). We call (Xt )t≥0 a branching coalescing
particle system with underlying motion (�, a), branching rate b, coalescence rate
c and death rate d, or shortly the (a, b, c, d)-braco-process.

Some typical examples of underlying motions we have in mind are nearest
neighbour random walk on � = Z

d and on � = T
d , the homogeneous tree of

degree d + 1. We will not restrict ourselves to symmetric underlying motions (i.e.,
a = a†) but also allow a(i, j) = 1{j=i+1} on Z, for example. The reason why we
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do not restrict ourselves to graphs, is that we also want to include the case� = �d ,
the hierarchical group with freedom d , i.e.,

�d := {i = (i0, i1, . . .) : iα ∈ {0, . . . , d − 1} ∀α ≥ 0, iα �= 0 finitely often },
(1.2)

equipped with componentwise addition modulo n. On �d , one typically chooses
transition rates a(i, j) that depend only on the hierarchical distance |i − j | :=
min{α ≥ 0 : iβ = jβ ∀β ≥ α}. The hierarchical group has found widespread
applications in population biology and is therefore a natural choice for the under-
lying space.

1.2. Motivation

Our motivation for studying branching-coalescing particle systems comes from
three directions.

Reaction diffusion models, Schlögl’s first model. Branching-coalescing particle
systems are known in the physics literature as a reaction diffusion models. More
precisely, our model is a special case of Schlögl’s first model [Sch72], where in the
latter there is an additional rate with which particles are spontaneously created. For
d = 0, our model is known as the autocatalytic reaction. Reaction diffusion models
have been studied intensively by physicists and more recently also by probabilists
[DDL90, Mou92, Neu90]. All work that we are aware of is restricted to the case
� = Z

d .
Population dynamics, the contact process. Branching-coalescing particle sys-

tems may be thought of as a more or less realistic model for the spread and growth
of a population of organisms. Here, the underlying motion models the migration of
organisms, births and deaths have their obvious interpretations, while coalescence
of particles should be thought of as additional deaths, caused by local overpop-
ulation. In this respect, our model is similar to the contact process. The latter is
often referred to as a model for the spread of an infection, but in fact it is a reason-
able model for the population dynamics of many organisms, from trees in a forest
to killer bees. There are two striking differences between the contact process and
branching-coalescing particle systems. First, whereas the total population at one
site is subject to a rigid bound in the contact process (namely one), it may reach
arbitrarily high values in a branching-coalescing system. However, when the local
population is high, the coalescence (which grows quadratically in the number of
organisms) dominates the branching (which grows linearly), and in this way the
population is reduced. A second difference is that in the contact process, if one
site infects its neighbor, the original site is still infected. As opposed to this, even
when the death rate is zero, it is possible that a branching coalescing particle system
goes to local extinction due to migration only. Thus, we can say that the gain from
infection is guaranteed in the contact process, whereas the reward for migration is
uncertain in a branching-coalescing particle system.

Resampling with selection and negative mutations. Our third motivation also
comes from population dynamics, but from a different perspective. Assume that at
each site i ∈ � there lives a large, fixed number of organisms, and that each of
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these organisms carries a gene that comes in two types: a healthy and a defective
one. Let us model the evolution of the population as follows. 1◦ with rate a(i, j),
we let an organism at site i migrate to site j . 2◦ to model the effect of natural
selection, we let each organism with rate b choose another organism, living on the
same site. If the first organism carries a healthy gene and the second organism a
defective gene, then the latter is replaced by an organism with a healthy gene. 3◦ to
model the effect of random mating, we resample each pair of organisms living at
the same site with rate 2c, i.e., we choose one of the two at random and replace it
by an organism with the type of the other one. 4◦ with rate d, we let a healthy gene
mutate into a defective gene. In the limit that the number of organisms at each site
is large, the frequencies Xt (i) of healthy organisms at site i and time t are described
by the unique pathwise solution to the infinite dimensional stochastic differential
equation (SDE) (see [SU86]):

dXt (i)=
∑

j

a(j, i)(Xt (j)− Xt (i)) dt + bXt (i)(1 − Xt (i)) dt − dXt (i) dt

+
√

2cXt (i)(1 − Xt (i)) dBt(i) (t ≥ 0, i ∈ �).
(1.3)

We call the [0, 1]�-valued process X = (Xt )t≥0 the resampling-selection process
with underlying motion (�, a), selection rate b, resampling rate c and mutation
rate d, or shortly the (a, b, c, d)-resem-process (the letters in ‘resem’ standing for
resampling, selection and mutation).

It is known that branching-coalescing particle systems are dual to resampling-
selection processes. To be precise, for any φ ∈ [0, 1]� and x ∈ N

�, write

φx :=
∏

i

φ(i)x(i), (1.4)

where 00 := 1. Let X be the (a, b, c, d)-resem-process and let X† be the (a†, b,

c, d)-braco-process. Then (see Theorem 1 (a) below)

Eφ[(1 − Xt )x] = Ex[(1 − φ)X
†
t ]. (1.5)

Formula (1.5) has the following interpretation: Eφ[(1 − Xt )x] is the probability
that x organisms, sampled from the population at time t , all have defective genes.
If we want to calculate this probability, we must follow back in time those organ-
isms that could possibly be healthy ancestors of these x organisms. In this way we
end up with a system of branching coalescing a†-random walks, which die when
a mutation occurs, coalesce when two potential ancestors descend from the same
ancestor, and branch when a selection event takes place. If we end up with at least
one healthy potential ancestor at time zero, then we know that not all the x particles
have defective genes.

Resampling-selection processes of the form (1.3) are also known as stepping
stone models (with selection and one type of mutation). These were studied by
Shiga and Uchiyama in [SU86], a paper similar in spirit to ours. The duality (1.5)
is a special case of Lemma 2.1 [SU86]. Moment duals for genetic diffusions in a
more general but non-spatial context go back to [Shi81]. The idea of incorporating
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selection in resampling models by introducing branching into the usual coalescent
dual seems to have been independently reinvented in [KN97]. They were proba-
bly the first to interpret the duality (1.5) in terms of potential ancestors. For some
recent versions of this duality, see also [DK99, DG99, BES02]. A SDE that is dual
to branching-annihilating random walks occurs in [BEM03, Lemma 2.1]. A SPDE
version of (1.3) (with d = 0) has been derived as the rescaled limit of long-range
biased voter models in [MT95, Theorem 2].

Note that for c = 0, the process X is deterministic. In this case, the semigroup
(Ut )t≥0 defined by Utφ := Xt (t ≥ 0), where X is the deterministic solution of
(1.3) with initial state X0 = φ ∈ [0, 1]�, is called the generating semigroup of
the branching particle systemX†. (For this terminology, see for example [FS03b].)
Thus, the duality relation (1.5) says that, loosely speaking, branching-coalescing
particle systems have a random generating semigroup. The SDE (1.3) will be our
main tool for studying branching-coalescing particle systems.

1.3. Preliminaries

In this section we introduce the notation and definitions that we will use throughout
the paper.
(Inner product and norm notation) For φ,ψ ∈ [−∞,∞]�, we write

〈φ,ψ〉 :=
∑

i

φ(i)ψ(i) and |φ| :=
∑

i

|φ(i)|, (1.6)

whenever the infinite sums are defined.

(Poisson measures) If φ is a [0,∞)�-valued random variable, then by definition a
Poisson measure with random intensity φ is an N

�-valued random variable Pois(φ)
whose law is uniquely determined by

E[(1 − ψ)Pois(φ)] = E[e−〈φ,ψ〉] (ψ ∈ [0, 1]�). (1.7)

In particular, when φ is nonrandom, then the components (Pois(φ)(i))i∈� are inde-
pendent Poisson distributed random variables with intensity φ(i).

(Thinned point measures) If x and φ are random variables taking values in N
� and

[0, 1]�, respectively, then by definition a φ-thinning of x is an N
�-valued random

variable Thinφ(x) whose law is uniquely determined by

E[(1 − ψ)Thinφ(x)] = E[(1 − φψ)x] (ψ ∈ [0, 1]�). (1.8)

In particular, when x and φ are nonrandom, and x = ∑m
n=1 δin , then a φ-thinning

of x can be constructed as Thinφ(x) := ∑m
n=1 χnδin where the χn are independent

{0, 1}-valued random variables with P [χn = 1] = φ(in).
If φ and x are both random, then it will always be understood that they are

independent. Thus, L(Thinφ(x)) depends on the laws L(φ) and L(x) alone, and
it is only the map (L(φ),L(x)) �→ L(Thinφ(x)) that is of interest to us. We have
chosen the present notation in terms of random variables instead of their laws to
keep things simple if φ and x are nonrandom.
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We leave it to the reader to check the elementary relations

Thinψ(Thinφ(x))
D= Thinψφ(x) and Thinψ(Pois(φ))

D= Pois(ψφ), (1.9)

where
D= denote equality in distribution.

(Weak convergence) We let N = N ∪ {∞} denote the one-point compactification

of N, and equip N
�

with the product topology. We say that probability measures νn
on N

�
converge weakly to a limit ν, denoted as νn ⇒ ν, when

∫
νn(dx)f (x) →

∫
ν(dx)f (x) for every f ∈ C(N�), the space of continuous real functions on N

�
.

One has νn ⇒ ν if and only if νn({x : x(i) = y(i) ∀i ∈ �}) → ν({x : x(i) =
y(i) ∀i ∈ �}) for all finite � ⊂ � and y ∈ N

�.
We equip the space [0, 1]� with the product topology, and we say that proba-

bility measures µn on [0, 1]� converge weakly to a limit µ, denoted as µn ⇒ µ,
when

∫
µn(dφ)f (φ) → ∫

µ(dφ)f (φ) for every f ∈ C([0, 1]�).

(Monotone convergence) If ν1, ν2 are probability measures on N
�

, then we say

that ν1 and ν2 are stochastically ordered, denoted as ν1 ≤ ν2, if N
�

-valued random
variables Y1, Y2 with laws L(Yi) = νi (i = 1, 2) can be coupled such that Y1 ≤ Y2.
We say that a sequence of probability measures νn on N

� decreases (increases)
stochastically to a limit ν, denoted as νn ↓ ν (νn ↑ ν), if random variables Yn, Y
with laws L(Yn) = νn and L(Y ) = ν can be coupled such that Yn ↓ Y (Yn ↑ Y ).
It is not hard to see that νn ↓ ν (νn ↑ ν) implies νn ⇒ ν. Stochastic ordering and
monotone convergence of probability measures on [0, 1]� are defined in the same
way.

(Finite systems) We denote the set of finite particle configurations by N (�) :=
{x ∈ N

� : |x| < ∞} and let

S(N (�)) := {f : N (�) → R : |f (x)| ≤ K|x|k +M for some K,M, k ≥ 0}
(1.10)

denote the space of real functions on N (�) satisfying a polynomial growth condi-
tion. For finite initial conditions, the (a, b, c, d)-braco-processX is well-defined as
a Markov process in N (�) (in particular,X does not explode), f (Xt ) is absolutely
integrable for each f ∈ S(N (�)) and t ≥ 0, and the semigroup

Stf (x) := Ex[f (Xt )] (t ≥ 0, x ∈ N (�), f ∈ S(N (�))) (1.11)

maps S(N (�)) into itself (see Proposition 8 below).

(Liggett-Spitzer space) Set as(i, j) := a(i, j) + a†(i, j). It follows from our
assumptions on a that there exist (strictly) positive constants (γi)i∈� such that

∑

i

γi < ∞ and
∑

j

as(i, j)γj ≤ Kγi (i ∈ �) (1.12)

for some K < ∞. We fix such (γi)i∈� throughout the paper and define the Ligg-
ett-Spitzer space (after [LS81])

Eγ (�) := {x ∈ N
� : ‖x‖γ < ∞}, (1.13)
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where for x ∈ Z
� we put

‖x‖γ :=
∑

i

γi |x(i)|. (1.14)

We let CLip(Eγ (�)) denote the class of Lipschitz functions on Eγ (�), i.e.,
f : Eγ (�) → R such that |f (x)− f (y)| ≤ L‖x − y‖γ for some L < ∞.

(Infinite systems) It is known ([Che87], see also Proposition 11 below) that for each
f ∈ CLip(Eγ (�)) and t ≥ 0, the function Stf defined in (1.11) can be extended to
a unique Lipschitz function on Eγ (�), also denoted by Stf . Moreover, there exists
a time-homogeneous Markov process X in Eγ (�) (also called (a, b, c, d)-braco-
process) with transition laws given by

Ex[f (Xt )] = Stf (x) (f ∈ CLip(Eγ (�)), x ∈ Eγ (�), t ≥ 0). (1.15)

We will show (in Proposition 11 below) thatX has a modification with cadlag sam-
ple paths, a fact that may seem obvious but to our knowledge has not been proved
before.

(Survival and extinction) We say that the (a, b, c, d)-braco-process survives if

Px[Xt �= 0 ∀t ≥ 0] > 0 for some x ∈ N (�). (1.16)

If X does not survive we say that X dies out. Note that the process with death rate
d = 0 survives, since the number of particles can no longer decrease once only one
particle is left. If� is finite then the (a, b, c, d)-braco-process survives if and only
if d = 0, but for infinite � survival often holds also for some d > 0. For � = Z

d

and b sufficiently large survival has been proved in [SU86, Theorem 3.1]. We plan
to study sufficient conditions for survival in more detail in a forthcoming paper.

(Nontrivial measures) We say that a probability measure ν on N
�

is nontrivial if

ν({0}) = 0, where 0 ∈ N
�

denotes the zero configuration. Likewise, we say that a
probability measure µ on [0, 1]� is nontrivial if µ({0}) = 0.

(Homogeneous lattices) By definition, an automorphism of (�, a) is a bijection
g : � → � such that a(gi, gj) = a(i, j) for all i, j ∈ �. We denote the group of
all automorphisms of (�, a) by Aut(�, a). We say that a subgroupG ⊂ Aut(�, a)
is transitive if for each i, j ∈ � there exists a g ∈ G such that gi = j . We say
that (�, a) is homogeneous if Aut(�, a) is transitive. We define shift operators
Tg : N

� → N
� by

Tgx(j) := x(g−1j) (i ∈ �, x ∈ N
�, g ∈ Aut(�, a)). (1.17)

If G is a subgroup of Aut(�, a), then we say that a probability measure ν on
N
� is G-homogeneous if ν ◦ T −1

g = ν for all g ∈ G. For example, if � = Z
d

and a(i, j) = 1{|i−j |=1} (nearest-neighbor random walk), then the group G of
translations i �→ i + j (j ∈ �) forms a transitive subgroup of Aut(�, a) and
the G-homogeneous probability measures are the translation invariant probability
measures. Shift operators and G-homogeneous measures on [0, 1]� are defined
analogously.
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1.4. Main results

Our first result is a tool that we exploit substantially towards the main result. Part (a)
is known [SU86, Lemma 2.1], but we are not aware of parts (b) and (c) occuring
anywhere in the literature.

Theorem 1 (Dualities and Poissonization). Let X and X be the (a, b, c, d)-
braco-process and the (a, b, c, d)-resem-process, respectively, and let X † denote
the (a†, b, c, d)-resem-process. Then the following holds:
(a) (Duality)

Px[Thinφ(Xt ) = 0] = Pφ[ThinX †
t
(x) = 0] (t ≥ 0, φ ∈ [0, 1]�, x ∈ Eγ (�)).

(1.18)
(b) (Self-duality) Assume c > 0, then

Pφ[Pois( b
c
Xtψ) = 0] = Pψ [Pois( b

c
φX †

t ) = 0] (t ≥ 0, φ, ψ ∈ [0, 1]�).
(1.19)

(c) (Poissonization) Assume c > 0, then

PL(Pois( b
c
φ))[Xt ∈ · ] = Pφ[Pois( b

c
Xt ) ∈ · ] (t ≥ 0, φ ∈ [0, 1]�), (1.20)

i.e., if X is started in the initial law L(Pois( b
c
φ)) and X is started in φ, then Xt

and Pois( b
c
Xt ) are equal in law.

Note that P [Thinφ(x) = 0] = (1 − φ)x . Therefore, Theorem 1 (a) is just a refor-
mulation of the duality relation (1.5). Theorem 1 (b) says that resampling-selec-
tion processes are in addition dual with respect to each other. In particular, if the
underlying motion is symmetric, i.e., a = a†, then this is a self-duality. Since
P [Pois(φ) = 0] = e−|φ|, formula (1.19) can be rewritten as

Eφ
[
e− b

c
〈Xt , ψ〉] = Eψ

[
e− b

c
〈φ,X †

t 〉]
(t ≥ 0, φ, ψ ∈ [0, 1]�). (1.21)

We note that by [Kal83, Lemma 15.5.1], for b > 0, the distribution of Xt is deter-

mined uniquely by all E[e−
b
c
〈Xt ,ψ〉] with ψ ∈ [0, 1]�. To convince the reader that

the notation in (1.18) and (1.19), which may feel a little uneasy in the beginning,
is convenient, we give here the proof of the Poissonization formula (1.20).

Proof of Theorem 1(c). By (1.9) and the duality relations (1.18) and (1.19),

PL(Pois( b
c
φ))[Thinψ(Xt ) = 0] = Pψ [ThinX †

t
(Pois( b

c
φ)) = 0]

= Pψ [Pois( b
c
X †
t φ) = 0]

= Pφ[Pois( b
c
ψXt ) = 0] = Pφ[Thinψ(Pois( b

c
Xt )) = 0].

(1.22)

Since this is true for all ψ ∈ [0, 1]�, the random variables Xt and Pois( b
c
Xt ) are

equal in distribution. ��
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Our next result shows that it is possible to start the (a, b, c, d)-braco-process with
infinitely many particles at each site. This result (except for parts (b) and (f)) has
been proved for branching-coalescing particle systems with more general branch-
ing and coalescing mechanisms on Z

d in [DDL90]. Their methods are not restricted
to the case� = Z

d , but we give an independent proof using duality, which has the
additional appeal of yielding the explicit bound in part (b).

Theorem 2 (The maximal branching-coalescing process). Assume that c > 0.
Then there exists an Eγ (�)-valued process X(∞) = (X

(∞)
t )t>0 with the following

properties:

(a) For each ε > 0, (X(∞)
t )t≥ε is the (a, b, c, d)-braco-process starting in X(∞)

ε .

(b) Set r := b − d + c. Then

E[X(∞)
t (i)] ≤

{
r

c(1−e−rt ) if r �= 0,
1
ct

if r = 0
(i ∈ �, t > 0). (1.23)

(c) If X(n) are (a, b, c, d)-braco-processes starting in initial states x(n) ∈ Eγ (�)
such that

x(n)(i) ↑ ∞ as n ↑ ∞ (i ∈ �), (1.24)

then
L(X(n)t ) ↑ L(X(∞)

t ) as n ↑ ∞ (t > 0). (1.25)

(d) There exists an invariant measure ν of the (a, b, c, d)-braco-process such that

L(X(∞)
t ) ↓ ν as t ↑ ∞. (1.26)

(e) If ν is another invariant measure for the (a, b, c, d)-braco-process, then ν ≤ ν.

(f) The measure ν is uniquely characterised by
∫

ν(dx)(1−φ)x = Pφ[∃t ≥ 0 such that X †
t = 0] (φ ∈ [0, 1]�), (1.27)

where X † denotes the (a†, b, c, d)-resem-process.

We call X(∞) the maximal (a, b, c, d)-braco process and we call ν the upper
invariant measure. To see why Theorem 2 (f) holds, note that by Theorem 1 (a) and
Theorem 2 (c),

P [Thinφ(X
(∞)
t ) = 0] = lim

n↑∞
Pφ[ThinX †(x(n)) = 0]

= Pφ[X †
t = 0] (φ ∈ [0, 1]�, t > 0). (1.28)

Now 0 is an absorbing state for the (a, b, c, d)-resem-process, and thereforePφ[X †
t

= 0] = Pφ[∃s ≤ t such that X †
s = 0]. Therefore, taking the limit t ↑ ∞ in (1.28)

we arrive at (1.27).
The (a, b, c, d)-resem process has an upper invariant measure too. Of our next

theorem, parts (a)–(c) are simple, but part (d) lies somewhat deeper.
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Theorem 3 (The maximal resampling-selection process). Let X 1 denote the
(a, b, c, d)-resem-process started in X 1

0 (i) = 1 (i ∈ �). Then the following holds.

(a) There exists an invariant measure µ of the (a, b, c, d)-resem process such that

L(X 1
t ) ↓ µ as t ↑ ∞. (1.29)

(b) If µ is another invariant measure, then µ ≤ µ.
(c) Let X† denote the (a†, b, c, d)-braco-process. Then

∫

µ(dφ)(1 − φ)x = Px[∃t ≥ 0 such that X†
t = 0] (x ∈ N (�)), (1.30)

and the measure µ is nontrivial if and only if the (a†, b, c, d)-braco-process
survives.

(d) Assume that c > 0 and that � is infinite. If Y is a random variable such that
µ = L(Y), then the upper invariant measure of the (a, b, c, d)-braco-process
is given by ν = L(Pois( b

c
Y)). If µ is nontrivial then so is ν.

Note that
∫
µ(dφ)(1 − φ)x is the probability that x individuals, sampled from a

population with resampling and selection in the equilibrium measure µ, all have
defective genes.

The following is our main result.

Theorem 4 (Convergence to the upper invariant measure). Assume that (�, a)
is infinite and homogeneous, G is a transitive subgroup of Aut(�, a), and c > 0.

(a) LetX be the (a, b, c, d)-braco process started in aG-homogeneous nontriv-
ial initial law L(X0). Then L(Xt ) ⇒ ν as t → ∞, where ν is the upper invariant
measure.

(b) Let X be the (a, b, c, d)-resem process started in a G-homogeneous non-
trivial initial law L(X0). Assume b > 0. Then L(Xt ) ⇒ µ as t → ∞, where µ is
the upper invariant measure.

Shiga and Uchiyama [SU86, Theorems 1.3 and 1.4] proved Theorem 4 (b) under
the additional assumptions that � = Z

d and that a satisfies a first moment condi-
tion in case the death rate d is zero. As we will show below Theorem 4 (b) can be
derived from Theorem 4 (a) by Poissonization, but not vice versa. We note that the
analogue of our Theorem 4 for the contact process on Z

d is well-known; see for
example [Lig85, Theorem VI.4.8].

1.5. Methods

A key ingredient in the proofs of Theorem 3 (d) and Theorem 4 is the following
property of resampling-selection processes, which is of some interest on its own.

Lemma 5 (Extinction versus unbounded growth). Assume that c > 0. Let X be
the (a, b, c, d)-resem-process starting in an initial state φ ∈ [0, 1]� with |φ| < ∞.
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Then e−
b
c
|Xt | is a submartingale, and a martingale if d = 0. If moreover � is

infinite, then

Xt = 0 for some t ≥ 0 or lim
t→∞ |Xt | = ∞ a.s. (1.31)

Note that by Theorem 1 (b),

Eφ
[
e− b

c
〈Xt , 1〉] = E1[e− b

c
〈φ,X †

t 〉] ≥ e− b
c
〈φ, 1〉

(φ ∈ [0, 1]�), (1.32)

with equality if d = 0, since 1 is a stationary state for the (a†, b, c, 0)-resem-pro-

cess. This shows that e−
b
c
|Xt | is a submartingale, and a martingale if d = 0. By

submartingale convergence, |Xt | converges a.s. to a limit in [0,∞]. All the hard
work of Lemma 5 consists of proving that this limit is a.s. either 0 or ∞, and that
X gets extinct in finite time if the limit is zero.

Once Lemma 5 is established the proof of Theorem 3 (d) is simple.

Proof of Theorem 3(d). Let Y be a random variable such that µ = L(Y) and let
Y be a random variable such that ν = L(Y ). By (1.9), Theorem 1 (b), and Theo-
rem 2 (f)

P [Thinφ(Pois( b
c
Y)) = 0] = lim

t→∞P
1[Pois( b

c
φXt ) = 0]

= lim
t→∞P

φ[Pois( b
c
X †
t ) = 0]

!= Pφ[∃t ≥ 0 such that X †
t = 0]

= P [Thinφ(Y ) = 0], (1.33)

where we have used Lemma 5 in the equality marked with ‘!’. Since (1.33) holds
for all φ ∈ [0, 1]�, the random variables Pois( b

c
Y) and Y are equal in distribution.

By Lemma 5, |Y| ∈ {0,∞} a.s. and therefore if µ is nontrivial then L(Pois( b
c
Y))

is nontrivial. ��

In view of Theorem 3 (d), it is natural to ask if for infinite lattices, every invari-
ant law of the (a, b, c, d)-braco-process is the Poissonization of an invariant law
of the (a, b, c, d)-resem-process. We do not know the answer to this question.

In order to give a very short proof of Theorem 4, we need one more lemma.

Lemma 6 (Systems with particles everywhere). Assume that (�, a) is infinite
and homogeneous and that G is a transitive subgroup of Aut(�, a). Let X be
the (a, b, c, d)-braco process started in a G-homogeneous nontrivial initial law
L(X0). Then, for any t > 0

lim
n→∞P [Thinφn(Xt ) = 0] = 0, (1.34)

for all φn ∈ [0, 1]� satisfying |φn| → ∞.
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Proof of Theorem 4(a). Let X † denote the (a†, b, c, d)-resem-process started in φ.
By Theorem 1 (a), Lemmas 5 and 6, and Theorem 2 (f),

lim
t→∞P [Thinφ(Xt ) = 0] = lim

t→∞P [ThinX †
t−1
(X1) = 0]

= P [∃t ≥ 0 such that X †
t = 0] =

∫

ν(dx) (1 − φ)x. (1.35)

Since this holds for all φ ∈ [0, 1]�, it follows that L(Xt ) ⇒ ν. ��
Proof of Theorem 4(b). Let X∞ and X∞ be random variables with laws ν and
µ, respectively. Let X be the (a, b, c, d)-resem-process started in a G-homoge-
neous nontrivial initial law L(X0). Let X be the (a, b, c, d)-braco-process started
in L(X0) := L(Pois( b

c
X0)). Then by Theorem 4 (a), L(Xt ) ⇒ L(X∞) as t →

∞. Therefore, by Poissonization (Theorem 1 (c)) and by Theorem 3 (d), L(Pois
( b
c
Xt )) ⇒ L(X∞) = L(Pois( b

c
X∞)). It follows that

P
[
e− b

c
〈Xt , φ〉] = P [Thinφ(Pois( b

c
Xt )) = 0]

�⇒ P [Thinφ(Pois( b
c
X∞)) = 0]

= P
[
e− b

c
〈X∞, φ〉] as t → ∞. (1.36)

Since this holds for all φ ∈ [0, 1]�, we conclude that L(Xt ) ⇒ L(X∞). ��
Note that there is no easy way to convert the last argument: if L(X0) is homo-

geneous and nontrivial then we cannot in general find a random variable X0 such
that L(X0) = L(Pois( b

c
X0)). For example, this is the case if X0(i) ≤ 1 for each

i ∈ � a.s. Therefore, Theorem 4 (a) is stronger than Theorem 4 (b).
Summarizing, all the hard work for getting Theorem 4 is in proving Lemmas 5

and 6, as well as the more basic Theorems 1 and 2. The heart of the proof of Theo-
rem 2 is the bound in part (b). We derive this bound using a ‘duality’ relation with a
nonnegative error term, between the (a, b, c, d)-braco-process and a super random
walk (Proposition 23). We call this relation a subduality. Theorem 2 (b) yields a
lower bound on the finite time extinction probabilities of the (a, b, c, d)-resem-pro-
cess started with small initial mass (Lemma 24, in particular formula (6.1)), which
plays a key role in the proof of Lemma 5.

Our methods are similar to those of Shiga and Uchiyama [SU86]. Since they
prove a version of our Theorem 4 (b), while our main focus is on proving the
stronger Theorem 4 (a), the roles of X and X are interchanged in their work. Their
Lemma 3.2 and Theorem 4.2 are analogues for the (a, b, c, d)-braco-process X
of our Lemma 5. The proof of the latter is considerably more involved, however.
This is because of the fact that we do not want to use spatial homogeneity and we
have to prove that |Xt | → 0 implies Xt = 0 for some t ≥ 0, which is obvious for
the (a, b, c, d)-braco-process X. On the other hand, we can use the submartingale

property of e−
b
c
|Xt |, a very useful fact that has no analogue for the particle system.

Lemma 2.5 in [SU86] is the analogue for the (a, b, c, d)-resem-process X of our
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Lemma 6. By adapting elements of their proof to our situation, we were able to
simplify and considerably shorten our original proof of Lemma 6.

Our original proof of Lemma 6 assumed that� has a group structure, and used
an L2 spatial ergodic theorem for general countable groups that need not be ame-
nable. If it turns out that this ergodic theorem is new, then it will be presented in a
separate paper.

1.6. Discussion

Generalizing our model, let X be a process in a Liggett-Spitzer subspace of N
�,

with local jump rates

x �→ x + δj − δi with rate a(i, j)

x �→ x + δi with rate
∑k
n=0 bnx

(n),

x �→ x − δi with rate
∑k+1
n=1 cnx

(n),

(1.37)

where x(0) := 1 and x(n) := x(x − 1) · · · (x − n + 1) (n ≥ 1). In particular,
the (a, b, c, d)-braco-process corresponds to the case k = 1, b0 = 0, b1 = b,
c1 = d, and c2 = c. Processes with jump rates as in (1.37) are known as reac-
tion-diffusion systems. It has been known for a long time that if the coefficients
satisfy

a = a† and bn = λcn for some λ ≥ 0, (1.38)

then L(Pois(λ)) is a reversible equilibrium for the corresponding reaction-diffu-
sion system. Note that the (a, b, c, d)-braco-process satisfies (1.38) if and only if
a = a† and d = 0.

The ergodic behavior of reaction-diffusion systems on � = Z
d satisfying the

reversibility condition (1.38) was studied by Ding, Durrett and Liggett in [DDL90].
For our model with a = a† and d = 0 on Z

d , they show that all homogeneous
invariant measures are convex combinations of δ0 and L(Pois( b

c
)). Their proof uses

the fact that for a large block in Z
d , surface terms are small compared to volume

terms, i.e., Z
d is amenable. Such arguments typically fail on nonamenable lattices

such as trees, and therefore it is not immediately obvious if their methods can be
generalized to such lattices. Our Theorem 4 (a) shows that all homogeneous invari-
ant measures of the (a, b, c, d)-braco-process are convex combinations of δ0 and
ν, also in the non-reversible case d > 0 and for nonamenable lattices. Thus, neither
reversibility nor amenability are essential here.

On the other hand, we believe that amenability is essential for more subtle
ergodic properties of reaction-diffusion processes. In analogy with the contact pro-
cess, let us say that a reaction-diffusion process with b0 = 0 exhibits complete
convergence, if

Px[Xt ∈ · ] ⇒ ρ(x)ν + (1 − ρ(x))δ0 as t → ∞ (x ∈ N (�)), (1.39)

where ρ(x) := Px[Xt �= 0 ∀t ≥ 0] denotes the survival probability. It has
been shown by Mountford [Mou92] that complete convergence holds for reaction-
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diffusion systems on � = Z
d satisfying the reversibility condition (1.38), b0 = 0,

and a first moment condition on a. We conjecture that complete convergence holds
more generally if a = a† and � is amenable, but not in general on nonamenable
lattices. As a motivation for this conjecture, we note that complete convergence
holds for the contact process on Z

d but not in general on T
d ; see Liggett [Lig99].

Other interesting processes that some of our techniques might be applied to are
multitype branching-coalescing particle systems. For example, it seems natural to
color the particles in a branching-coalescing particle system in two (or more) colors,
with the rule that in coalescence of differently colored particles, the newly created
particle chooses the color of one of its parents with equal probabilities (neutral
selection) or with a prejudice towards one color (positive selection). More difficult
questions refer to what happens when the two colors have different parameters
b, c, d or even different underlying motions a.

One also wonders whether the techniques in this paper can be generalized to
reaction-diffusion processes with higher-order branching and coalescence as in
(1.37). It seems that at least some of these systems have some sort of a resampling-
selection dual too, now with ‘resampling’and ‘selection’events involving three and
more particles.

We conclude with an intriguing question. Does survival of the (a, b, c, d)-
braco-process X imply survival of the (a†, b, c, d)-braco-process X†? If X sur-
vives, then Theorem 3 (c) and (d) and Theorem 4 (a) show that the upper invariant
measure of X† is nontrivial, which suggests that X† should survive. Survival of
X† is obvious if (�, a) and (�, a†) are isomorphic, as is the case if a = a†, or if
� is an Abelian group, with group action denoted by +, and a(i, j) depends only
on j − i. However, even when (�, a) is homogeneous, (�, a) and (�, a†) need
in general not be isomorphic, and in this case we don’t know the answer to our
question.

1.7. Outline

We start in Section 2 with a few generalities about martingale problems that will
be needed in our proofs. In Section 3 we construct (a, b, c, d)-braco-processes and
(a, b, c, d)-resem-processes and prove some of their elementary properties, such as
comparison, approximation with finite systems, moment estimates and martingale
problems. Section 4 contains the proof of Theorem 1 and of the subduality between
branching-coalescing particle systems and super random walks. In Section 5 we
prove Theorems 2 and 3. In Section 6, finally, we prove Lemma 5 and Lemma 6,
thereby completing the proof of Theorem 4.

2. Martingale problems

2.1. Definitions

If E is a metrizable space, we denote by M(E), B(E) the spaces of real Borel
measurable and bounded real Borel measurable functions on E, respectively. If A
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is a linear operator from a domain D(A) ⊂ M(E) intoM(E) andX is anE-valued
process, then we say that X solves the martingale problem for A if X has cadlag
sample paths and for each f ∈ D(A),

E
[|f (Xt )|

]
< ∞ and

∫ t

0
E

[|Af (Xs)|
]
ds < ∞ (t ≥ 0), (2.1)

and the process (Mt)t≥0 defined by

Mt := f (Xt )−
∫ t

0
Af (Xs)ds (t ≥ 0) (2.2)

is a martingale with respect to the filtration generated by X.

2.2. Duality with error term

For later use in Section 4, we formulate a theorem giving sufficient conditions
for two martingale problems to be dual to each other up to a possible error term.
Although the techniques for proving Theorem 7 below are well-known (see, for
example, [EK86, Section 4.4]), we don’t know a good reference for the theorem as
is formulated here.

Theorem 7 (Duality with error term). Assume thatE1, E2 are metrizable spaces
and that for i = 1, 2, Ai is a linear operator from a domain D(Ai) ⊂ B(Ei) into
M(Ei). Assume that � ∈ B(E1 × E2) satisfies �(·, x2) ∈ D(A1) and �(x1, ·) ∈
D(A2) for each x1 ∈ E1 and x2 ∈ E2, and that

�1(x1, x2) : = A1�(·, x2)(x1) and �2(x1, x2) :

= A2�(x1, ·)(x2) (x1 ∈ E1, x2 ∈ E2) (2.3)

are jointly measurable in x1 and x2. Assume that X1 and X2 are independent
solutions to the martingale problems for A1 and A2, respectively, and that

∫ T

0
ds

∫ T

0
dt E

[|�i(X1
s , X

2
t )|

]
< ∞ (T ≥ 0, i = 1, 2). (2.4)

Then

E[�(X1
T ,X

2
0)] − E[�(X1

0, X
2
T )] =

∫ T

0
dt E[R(X1

t , X
2
T−t )] (T ≥ 0), (2.5)

where R(x1, x2) := �1(x1, x2)−�2(x1, x2) (x1 ∈ E1, x2 ∈ E2).

Proof. Put

F(s, t) := E[�(X1
s , X

2
t )] (s, t ≥ 0). (2.6)
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Then, for each T > 0,

∫ T

0
dt

{
F(t, 0)− F(0, t)

} =
∫ T

0
dt

{
F(T − t, t)− F(0, t)

−F(T − t, t)+ F(t, 0)
}

=
∫ T

0
dt

{
F(T − t, t)− F(0, t)

}

−
∫ T

0
dt

{
F(t, T − t)− F(t, 0)

}
, (2.7)

where we have subsituted t �→ T − t in the term −F(T − t, t). Since X1 solves
the martingale problem for A1,

E
[
�(X1

T−t , x2)
] − E

[
�(X1

0, x2)
] =

∫ T−t

0
ds E

[
�1(X

1
s , x2)

]
(x2 ∈ E2),

(2.8)
and therefore, integrating the x2-variable with respect to the law of X2

t , using the
independence of X1 and X2 and (2.4), we find that

∫ T

0
dt

{
F(T − t, t)− F(0, t)

} =
∫ T

0
dt

{
E

[
�(X1

T−t , X
2
t )

] − E
[
�(X1

0, X
2
t )

]}

=
∫ T

0
dt

∫ T−t

0
ds E

[
�1(X

1
s , X

2
t )

]

=
∫ T

0
dt

∫ t

0
ds E

[
�1(X

1
t−s , X

2
s )

]
. (2.9)

Treating the second term in the right-hand side of (2.7) in the same way, we find
that

∫ T

0
dt

{
F(t, 0)− F(0, t)

} =
∫ T

0
dt

∫ t

0
ds E

[
�1(X

1
t−s , X

2
s )

]

−
∫ T

0
dt

∫ t

0
ds E

[
�2(X

1
t−s , X

2
s )

]
. (2.10)

Differentiating with respect to T we arrive at (2.5). ��

3. Construction and Comparison

3.1. Finite branching-coalescing particle systems

For finite initial conditions, the (a, b, c, d)-braco-process X can be constructed
explicitly using exponentially distributed random variables. The only thing one
needs to check is that X does not explode. This is part of the next proposition.
Recall the definitions of N (�) and S(N (�)) from (1.10) and of G from (1.1).
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Proposition 8 (Finite braco-processes). Let X be the (a, b, c, d)-braco-process
started in a finite state x. Then X does not explode. Moreover, with z〈k〉 := z(z +
1) · · · (z+ k − 1), one has

Ex
[|Xt |〈k〉

] ≤ |x|〈k〉ekbt (k = 1, 2, . . . , t ≥ 0). (3.1)

For each f ∈ S(N (�)), one has Gf ∈ S(N (�)) and X solves the martingale
problem for the operator G with domain S(N (�)).

Proof. Introduce stopping times τN := inf{t ≥ 0 : |Xt | ≥ N}. Put f kt (x) :=
|x|〈k〉e−kbt . It is easy to see that

{G+ ∂
∂t

}f kt (x) ≤ kb|x|〈k〉e−kbt − kb|x|〈k〉e−kbt = 0. (3.2)

The stopped process (Xt∧τN )t≥0 is a jump process in {x ∈ N
� : |x| ≤ N} with

bounded jump rates, and therefore standard theory tells us that the process (Mt)t≥0
given by

Mt := f kt∧τN (Xt∧τN )−
∫ t∧τN

0

({G+ ∂
∂s

}f ks
)
(Xs) ds (t ≥ 0) (3.3)

is a martingale. By (3.2), it follows that Ex
[|Xt∧τN |〈k〉e−kb(t∧τN )] ≤ |x|〈k〉 and

therefore

Ex
[|Xt∧τN |〈k〉] ≤ |x|〈k〉ekbt (k = 1, 2, . . . , t ≥ 0). (3.4)

In particular, setting k = 1, we see that

NPx[τN ≤ t] ≤ Ex
[|Xt∧τN |] ≤ |x|ebt (t ≥ 0), (3.5)

which shows that limN→∞ Px[τN ≤ t] = 0 for all t ≥ 0, i.e., the process does not
explode. Taking the limit N ↑ ∞ in (3.4), using Fatou, we arrive at (3.1).

If f ∈ S(N (�)) then f is bounded on sets of the form {x ∈ N
� : |x| ≤ N},

and thereforeGf is well-defined. By standard theory, the processes (MN
t )t≥0 given

by

MN
t := f (Xt∧τN )−

∫ t∧τN

0
Gf (Xs)ds (t ≥ 0) (3.6)

are martingales. It is easy to see that f ∈ S(N (�)) implies Gf ∈ S(N (�)), and
therefore

∫ t
0 E[|Gf (Xs)|ds < ∞ for all t ≥ 0 by (3.1). Using (3.4), one can now

check that for fixed t ≥ 0, the random variables {MN
t }N≥1 are uniformly integrable.

Taking the pointwise limit in (3.6), one can now check thatX solves the martingale
problem for G with domain S(N (�)). ��
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3.2. Monotonicity and subadditivity

In this section we present two simple comparison results for finite branching-coa-
lescing particle systems.

Lemma 9 (Comparison of branching-coalescing particle systems). Let X and
X̃ be the (a, b, c, d)-braco-process and the (a, b̃, c̃, d̃)-braco-process started in
finite initial states x and x̃, respectively. Assume that

x ≤ x̃, b ≤ b̃, c ≥ c̃, d ≥ d̃. (3.7)

Then X and X̃ can be coupled in such a way that

Xt ≤ X̃t (t ≥ 0). (3.8)

Proof. We will construct a bivariate process (B,W), say of black and white parti-
cles, such thatX = B are the black particles and X̃ = B+W are the black and white
particles together. To this aim, we let the particles evolve in such a way that black
and white particles branch with rates b and b̃, respectively, and additionally black
particles give birth to white particles with rate b̃−b. Moreover, all pairs of particles
coalesce with rate 2c̃, where the new particle is black if at least one of its parents is
black, and additionally each pair of black particles is with rate 2c− 2c̃ replaced by
a pair consisting of one black and one white particle. Finally, all particles die with
rate d̃, and additionally, black particles change into white particles with rate d − d̃.
It is easy to see that with these rules, X and X̃ are the (a, b, c, d)-braco-process
and the (a, b̃, c̃, d̃)-braco-process, respectively. ��

The next lemma has been proved for � = Z
d in [SU86, Lemma 2.2]. It can be

proved (with particles in three colors) in a similar way as the previous lemma.

Lemma 10 (Subadditivity). Let X, Y,Z be (a, b, c, d)-braco-processes started
in finite initial states x, y, and x + y, respectively. Then X, Y,Z may be coupled
in such a way that X and Y are independent and

Zt ≤ Xt + Yt (t ≥ 0). (3.9)

3.3. Infinite branching-coalescing particle systems

In this section we carry out the construction of branching-coalescing particle sys-
tems for infinite initial conditions. We will also derive two results on the approxi-
mation of infinite systems with finite systems, that are needed later on. Except for
the statement about sample paths, the next proposition has been proved in [Che87],
but we give a proof here for the sake of completeness.

Proposition 11 (Construction of branching-coalescing particle systems). For
each f ∈ CLip(Eγ (�)) and t ≥ 0, the function Stf defined in (1.11) can be
extended to a unique Lipschitz function on Eγ (�), also denoted by Stf . There
exists a unique (in distribution) time-homogeneous Markov process with cadlag
sample paths in the space Eγ (�) equipped with the norm ‖ · ‖γ , such that

Ex[f (Xt )] = Stf (x) (f ∈ CLip(Eγ (�)), x ∈ Eγ (�), t ≥ 0). (3.10)
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We start with the following lemma.

Lemma 12 (Action of the semigroup on Lipschitz functions). If f : N (�) → R

is Lipschitz continuous in the norm ‖ · ‖γ from (1.14), with Lipschitz constant L,
and K is the constant from (1.12), then

|Stf (x)− Stf (y)| ≤ Le(K+b−d)t‖x − y‖γ (x, y ∈ N (�), t ≥ 0). (3.11)

Proof. It follows from Propostion 8 that ∂
∂t
E[f (Xt )] = E[Gf (Xt)] for all f ∈

S(N (�)), t ≥ 0. Applying this to the function f (x) := ‖x‖γ we see that

∂
∂t
Ex[‖Xt‖γ ] =

∑

ij

a(i, j)(γj − γi)E[Xt(i)] + (b − d)Ex[‖Xt‖γ ]

−c
∑

i

γiE[Xt(i)(Xt (i)− 1)] ≤ (K + b − d)E[‖X‖γ ],

(3.12)
and therefore

Ex[‖Xt‖γ ] ≤ e(K+b−d)t‖x‖γ (x ∈ N (�)). (3.13)

Let Xx denote the (a, b, c, d)-braco-process started in x. By Lemma 9, we can
couple Xx , Xy , Xx∧y , and Xx∨y such that Xx∧yt ≤ Xxt ,X

y
t ≤ X

x∨y
t for all t ≥ 0.

It follows that

E[‖Xxt −X
y
t ‖γ ] ≤ E[‖Xx∨yt −X

x∧y
t ‖γ ]. (3.14)

By Lemma 10, we can couple Xx∧y and Xx∨y to the process X|x−y| such that
X
x∨y
t ≤ X

x∧y
t +X

|x−y|
t for all t ≥ 0. Therefore, by (3.14) and (3.13),

E[‖Xxt −X
y
t ‖γ ] ≤ E[‖X|x−y|

t ‖γ ] ≤ ‖x − y‖γ e(K+b−d)t , (3.15)

which implies that

|Stf (x)− Stf (y)| ≤E[|f (Xxt )− f (X
y
t )|]

≤LE[‖Xxt −X
y
t ‖γ ] ≤ L‖x − y‖γ e(K+b−d)t , (3.16)

as required. ��

Since Lipschitz functions on N (�) have a unique Lipschitz extension to Eγ (�),
Lemma 12 implies that Stf can be uniquely extended to a function in CLip(Eγ (�))
for each f ∈ CLip(Eγ (�)).

Lemma 13 (Construction of the process for fixed times). LetX(n) be (a, b, c, d)-
braco-processes started in initial states x(n) ∈ N (�) such that x(n) ↑ x for some
x ∈ Eγ (�). Then the X(n) may be coupled such that X(n)t ↑ Xt (t ≥ 0) for some

N
�

-valued process X = (Xt )t≥0. The process X satisfies Xt ∈ Eγ (�) a.s. ∀t ≥ 0
and X is a Markov process with semigroup (St )t≥0.
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Proof. It follows from Lemma 9 that the X(n) can be coupled such that X(n)t ≤
X
(n+1)
t (t ≥ 0), and therefore X(n)t ↑ Xt (t ≥ 0) for some N

�
-valued random

variables Xt . By (3.15),

E
[‖Xt −X

(n)
t ‖γ

] = lim
m↑∞

E
[‖X(m)t −X

(n)
t ‖γ

] ≤ ‖x − x(n)‖γ e(K+b−d)t . (3.17)

This shows in particular thatE[‖Xt‖γ ] < ∞ and thereforeXt ∈ Eγ (�) a.s. ∀t ≥ 0.
If f ∈ CLip(Eγ (�)) has Lipschitz constant L, then by (3.17),

|E[f (Xt )] − E[f (X(n)t )]| ≤ E[|f (Xt )− f (X
(n)
t )|]

≤ LE[‖Xt −X
(n)
t ‖γ ]

≤ L‖x − x(n)‖γ e(K+b−d)t ,
(3.18)

and therefore

E[f (Xt )] = lim
n↑∞

E[f (X(n)t )] = lim
n↑∞

Stf (x
(n)) = Stf (x). (3.19)

This proves that for each x ∈ Eγ (�) and t ≥ 0 there exists a probability measure
Pt(x, ·) on Eγ (�) such that

∫
Pt(x, dy)f (y) = Stf (x) for all f ∈ CLip(Eγ (�)).

We need to show thatX is the Markov process with transition probabilitiesPt(x, dy).
Let CLip,b(Eγ (�)) denote the class of bounded Lipschitz functions on Eγ (�). Then
CLip,b(Eγ (�)) is closed under multiplication and St maps CLip,b(Eγ (�)) into itself.
Therefore, for all 0 ≤ t0 < · · · < tk and f1, . . . , fk ∈ CLip,b(Eγ (�)), one has

E
[
f1(X

(n)
t1
) · · · fk(X(n)tk )

] = St1f1St2−t1f2 · · · Stk−tk−1fk(x
(n)). (3.20)

It follows from (3.17) that

∣
∣E

[
f1(Xt1) · · · fk(Xtk )

] − E
[
f1(X

(n)
t1
) · · · fk(X(n)tk )

]∣
∣

≤ ‖x − x(n)‖γ
k∑

i=1

Lie
(K+b−d)tk ∏

j �=i
‖fj‖∞, (3.21)

where Li is the Lipschitz constant of fi . Taking the limit n ↑ ∞ in (3.20), using
(3.21), we see that

E
[
f1(Xt1) · · · fk(Xtk )

] = St1f1St2−t1f2 · · · Stk−tk−1fk(x), (3.22)

i.e., X is the Markov process with semigroup (St )t≥0. ��
Proof of Proposition 11. We need to show that the process X from Lemma 13 sat-
isfies Xt ∈ Eγ (�) ∀t ≥ 0 a.s. (and not just for fixed times) and that (Xt )t≥0 has
cadlag sample paths with respect to the norm ‖ · ‖γ . It suffices to prove these facts
on the time interval [0, 1]. We will do this by constructing an Eγ (�)-valued process
Z such that Z makes only upward jumps, and the number of upward jumps of Z
dominates the number of upward jumps of X.
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Couple the process X(n) from Lemma 13 to a process Y (n) such that the joint
process (X(n), Y (n)) is the Markov process in N (�)× N (�) with generator

GX,Y f (x, y) : =
∑

ij

a(i, j)x(i){f (x + δj − δi, y + δi)− f (x, y)}

+
∑

ij

a(i, j)y(i){f (x, y + δj )− f (x, y)}

+b
∑

i

x(i){f (x + δi, y)− f (x, y)}

+b
∑

i

y(i){f (x, y + δi)− f (x, y)}

+c
∑

i

x(i)(x(i)− 1){f (x − δi, y + δi)− f (x, y)}

+d
∑

i

x(i){f (x − δi, y + δi)− f (x, y)}. (3.23)

and initial state (X(n)0 , Y
(n)
0 ) = (x(n), 0). Indeed, it is not hard to see that the first

component of the process with generator GX,Y is the (a, b, c, d)-braco-process,
and that Z(n) := X(n) + Y (n) is the Markov process in N (�) with generator

GZf (z) :=
∑

ij

a(i, j)z(i){f (z+δj )−f (z)}+b
∑

i

z(i){f (z+δi)−f (z)} (3.24)

and initial state Z(n)0 = x(n). In analogy with (3.13) it is easy to check that

Ez[‖Z(n)t ‖γ ] ≤ ‖x(n)‖γ e(K+b)t (z ∈ N (�), t ≥ 0). (3.25)

Z(n) makes only upward jumps and Z(n)(i) makes at least as many upward jumps
as X(n)(i). Since X(n)(i) cannot become negative, it follows that

|{t ∈ [0, 1] : X(n)t− (i) �= X
(n)
t (i)}| ≤ x(n)(i)+ 2Z(n)1 (i). (3.26)

Summing with respect to the γi , taking expectations, using (3.25), we see that
∑

i

γi E
[|{t ∈ [0, 1] : X(n)t− (i) �= X

(n)
t (i)}|] ≤ ‖x(n)‖γ (1 + 2eK+b). (3.27)

Let Z be the increasing limit of the processes Z(n). It follows from (3.25) that
Z1 ∈ Eγ (�) a.s. Now

Xt,Xt− ≤ Zt ≤ Z1 ∀t ∈ [0, 1] a.s., (3.28)

and thereforeXt,Xt− ∈ Eγ (�) ∀t ∈ [0, 1] a.s. Since a.s. all jumps occur at differ-
ent times,

|{t ∈ [0, 1] : X(n)t− (i) �= X
(n)
t (i)}| ↑ |{t ∈ [0, 1] : Xt−(i) �= Xt(i)}| as n ↑ ∞.

(3.29)
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Thus, taking the limit n ↑ ∞ in (3.27) we see that
∑

i

γi E
[|{t ∈ [0, 1] : Xt−(i) �= Xt(i)}|

] ≤ ‖x‖γ (1 + 2eK+b). (3.30)

This proves that X has a.s. componentwise cadlag sample paths. If 1 ≥ tn ↓ t ,
then Xtn → Xt pointwise and |Xtn − Xt | ≤ 2Z1, and therefore, by dominated
convergence,

‖Xtn −Xt‖γ =
∑

i

γi |Xtn(i)−Xt(i)| → 0. (3.31)

The same argument shows that Xtn → Xt− for tn ↑ t ≤ 1, i.e., X has cadlag
sample paths with respect to the norm ‖ · ‖γ . ��

The proof of Proposition 11 yields a useful corollary.

Corollary 14 (Locally finite number of jumps). The (a, b, c, d)-braco-process
X satisfies

∑

i

γi E
x
[|{t ∈ [0, 1] : Xt−(i) �= Xt(i)}|

] ≤ ‖x‖γ (1 + 2eK+b). (3.32)

We can now prove two approximation lemmas.

Lemma 15 (Convergence of finite dimensional distributions). Let Xxn,Xx be
the (a, b, c, d)-braco-process started in initial states xn, x ∈ Eγ (�), respectively,
such that

lim
n→∞ ‖xn − x‖γ = 0. (3.33)

Then, for all 0 ≤ t1 < · · · < tk , one has

(X
(n)
t1
, . . . , X

(n)
tk
) ⇒ (Xt1 , . . . , Xtk ) as n → ∞. (3.34)

Proof. Use (3.22) for xn and then let n → ∞. ��
Lemma 16 (Monotonicities for infinite systems). Lemmas 9 and 10 also hold
for infinite initial states. If Xx,Xxn are (a, b, c, d)-braco-process started in initial
states x, xn ∈ Eγ (�), such that xn ↑ x, then Xx,Xxn may be coupled such that

X
xn
t (i) ↑ Xxt (i) as n ↑ ∞ ∀i ∈ �, t ≥ 0 a.s. (3.35)

Proof. The proof of Proposition 11 shows that (3.35) holds if the xn are finite. To
generalize Lemma 9 to infinite initial states x, x̃, it therefore suffices to note that if
x ≤ x̃, then there exist finite xn ≤ x̃n such that xn ↑ x and x̃n ↑ x̃, and then take the
limit n ↑ ∞ in (3.8) using (3.35). Lemma 10 can be generalized to infinite x, y by
approximation with finite xn, yn in the same way. Finally, to see that (3.35) remains
valid if the xn are infinite, note that by Lemma 9 (which has now been proved in the
infinite case), the processesXxn can be coupled such thatXxnt (i) ≤ X

xn+1
t (i) for all

i ∈ � and t ≥ 0. Denote the increasing limit of the Xxn by Xx . Lemma 15 shows
that Xx has the same finite dimensional distributions as the (a, b, c, d)-braco-pro-
cess started in x and it follows from Corollary 14 thatXx has componentwise cadlag
sample paths, so Xx is a version of the (a, b, c, d)-braco-process started in x. ��
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3.4. Construction and comparison of resampling-selection processes

We equip the space [0, 1]� with the product topology and let C([0, 1]�) denote the
space of continuous real functions on [0, 1]�, equipped with the supremum norm.
By C2

fin([0, 1]�)we denote the space of C2 functions on [0, 1]� depending on finitely
many coordinates. By definition, C2

sum([0, 1]�) is the space of continuous functions

f on [0, 1]� such that the partial derivatives ∂
∂φ(i)

f (φ) and ∂2

∂φ(i)∂φ(j)
f (φ) exist

for each φ ∈ (0, 1)� and such that the functions

φ �→ (
∂

∂φ(i)
f (φ)

)
i∈� and φ �→ (

∂2

∂φ(i)∂φ(j)
f (φ)

)
i,j∈� (3.36)

can be extended to continuous functions from [0, 1]� into the spaces �1(�) and
�1(�2) of absolutely summable sequences on � and �2, respectively, equipped
with the �1-norm. Define an operator G : C2

sum([0, 1]�) → C([0, 1]�) by

Gf (φ) :=
∑

ij

a(j, i)(φ(j)− φ(i)) ∂
∂φ(i)

f (φ)

+b
∑

i

φ(i)(1 − φ(i)) ∂
∂φ(i)

f (φ)

+c
∑

i

φ(i)(1 − φ(i)) ∂2

∂φ(i)2
f (φ)

−d
∑

i

φ(i) ∂
∂φ(i)

f (φ) (φ ∈ [0, 1]�). (3.37)

One can check that for f ∈ C2
sum([0, 1]�), the infinite sums converge in the

supremumnorm and the result does not depend on the summation order [Swa99,
Lemma 3.4.4]. If a [0, 1]�-valued process X solves the martingale problem for
G with domain Cfin([0, 1]�), then also for the larger domain Csum([0, 1]�) (see
[Swa99, Lemma 3.4.5]).

Let C[0,1]� [0,∞) denote the space of continuous functions from [0,∞) into
[0, 1]�, equipped with the topology of uniform convergence on compacta. IfX (n),X
are C[0,1]� [0,∞)-valued random variables, then we say that X (n) converges in dis-
tribution to X , denoted as X (n) ⇒ X , when L(X (n)) converges weakly to L(X ).
Convergence in distribution implies convergence of the finite-dimensional distri-
butions (see [EK86, Theorem 3.7.8]). The fact that a C[0,1]� [0,∞)-valued random
variable X solves the martingale problem for G is a property of the law of X only.
Standard results from [EK86] yield the following (for the details, see for example
Lemma 4.1 in [Swa00]):

Lemma 17 (Existence and compactness of solutions to the martingale prob-
lem). For each φ ∈ [0, 1]�, there exists a solution X to the martingale problem
for G with initial state X0 = φ, and each solution to the martingale problem for G
has continuous sample paths. Moreover, the space {L(X ) : X solves the martingale
problem for G} is compact in the topology of weak convergence.
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If X solves the SDE (1.3), then X solves the martingale problem for G. Conversely,
each solution to the martingale problem for G is equal in distribution to some (weak)
solution of the SDE (1.3). Thus, existence of (weak) solutions to (1.3) follows from
Lemma 17. Distribution uniqueness of solutions to (1.3) follows from pathwise
uniqueness, which is in turn implied by the following comparison result.

Lemma 18 (Monotone coupling of linearly interacting diffusions). Let I ⊂ R

be a closed interval, let σ : I → R be Hölder- 1
2 -continuous, and let b1, b2 : I → R

be Lipschitz continuous functions such that b1 ≤ b2. Let X α(α = 1, 2) be solutions,
relative to the same system of Brownian motions, of the SDE

dX α
t (i) =

∑

j

a(j, i)(X α
t (j)− X α

t (i))dt + bα(X α
t (i))dt + σ(X α

t (i))dBt(i).

(3.38)
(i ∈ �, t ≥ 0, α = 1, 2). Then

X 1
0 ≤ X 2

0 implies X 1
t ≤ X 2

t ∀t ≥ 0 a.s. (3.39)

Proof (sketch). Set �t(i) := X 1
t (i) − X 2

t (i) and write x+ := x ∨ 0. Using an
appropriate smoothing of the function x �→ x+ in the spirit of [YW71, Theorem 1]
and arguing as in the proof of [SS80, Theorem 3.2], one can show that

E[‖�+
t ‖γ ] ≤ (K + L)

∫ t

0
E[‖�+

s ‖γ ]ds, (3.40)

where ‖ · ‖γ is the norm from (1.14), K is the constant from (1.12), and L is the
Lipschitz-constant of b2. The result now follows from Gronwall’s inequality. ��
Corollary 19 (Comparison of resampling-selection processes). Assume that X ,
X̃ are solutions to the SDE (1.3), relative to the same collection of Brownian
motions, with parameters (a, b, c, d) and (a, b̃, c, d̃) and starting in initial states
φ, φ̃, respectively. Assume that

φ ≤ φ̃, d − b ≥ d̃ − b̃, d ≥ d̃. (3.41)

Then
Xt ≤ X̃t ∀t ≥ 0 a.s. (3.42)

Proof. Immediate from Lemma 18 and the fact that by (3.41), bx(1 − x)− dx ≤
b̃x(1 − x)− d̃x for all x ∈ [0, 1]. ��

Our next lemma shows that resampling-selection processes with finite initial
mass have finite mass at all later times. The estimate (3.43) is not very good if
b − d < 0, but it suffices for our purposes.

Lemma 20 (Summable resampling-selection processes). Let X be the (a, b,
c, d)-resem-process started in x ∈ [0, 1]� with |x| < ∞. Set r := (b − d) ∨ 0.
Then

Ex
[|Xt |

] ≤ |x|ert (t ≥ 0), (3.43)

and |Xt | < ∞ ∀t ≥ 0 a.s.
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Proof. Without loss of generality we may assume that b ≥ d; otherwise, using
Corollary 19, we can bound X from above by a braco-process with a higher b. Set
r := b − d and put Yt (i) := Xt (i)e−rt . By Itô’s formula,

dYt (i) =
∑

j

a(j, i)(Yt (j)− Yt (i)) dt − be−rtXt (i)2dt

+e−rt
√
cXt (i)(1 − Xt (i)) dBt(i). (3.44)

Set τN := inf{t ≥ 0 : |Xt | ≥ N}. Integrate (3.4) up to t ∧ τN and sum over i. The
motion terms yield
∫ t∧τN

0

∑

ij

a(j, i)(Ys(j)− Ys(i)) ds

=
∫ t∧τN

0

∑

j

( ∑

i

a(j, i)
)Ys(j) ds −

∫ t∧τN

0

∑

i

( ∑

j

a†(i, j)
)Ys(i) ds = 0,

(3.45)
where the infinite sums converge in a bounded pointwise way since |Ys | ≤ N for
s ≤ τN . It follows that

|Yt∧τN | = |x| − b
∑

i

∫ t∧τN

0
Xs(i)2e−rsds

+
∑

i

∫ t∧τN

0

√
cXs(i)(1 − Xs(i)) e−rsdBs(i), (3.46)

provided we can show that the infinite sum of stochastic integrals converges.
Indeed, for any finite � ⊂ �, by the Itô isometry,

∑

i∈�
E

[∣
∣
∣

∫ t∧τN

0

√
cXs(i)(1 − Xs(i)) e−rsdBs(i)

∣
∣
∣
2]

= c
∑

i∈�
E

[ ∫ t∧τN

0
Xs(i)(1 − Xs(i))e−2rsds

]
≤ cE

[ ∫ t∧τN

0
|Xs |ds

]
≤ ctN,

(3.47)
which shows that the stochastic integrals in (3.4) are absolutely summable in L2-
norm. It follows from (3.4) that

Ex[|Xt∧τN |]e−rt ≤ Ex[|Xt∧τN |e−r(t∧τN )] = Ex[|Yt∧τN |] ≤ |x|. (3.48)

Now NPx[τN ≤ t] ≤ |x|ert for all t ≥ 0, which shows that τN ↑ ∞ as N ↑ ∞
a.s. Letting N ↑ ∞ in (3.48) we arrive at (3.43). ��

We conclude this section with two results on the continuity of X in its initial
state.

Lemma 21 (Convergence in law). Assume that X (n),X are (a, b, c, d)-resem-
processes, started in x(n), x ∈ [0, 1]�, respectively. Then x(n) → x implies X (n) ⇒
X .
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Proof. By Lemma 17, the laws L(X (n)) are tight and each cluster point of the
L(X (n)) solves the martingale problem for G with initial state x. Therefore, by
uniqueness of solutions to the martingale problem, X (n) ⇒ X . ��
Lemma 22 (Monotone convergence). LetX (n),X be (a, b, c, d)-resem-processes
started in ϕ(n), ϕ ∈ [0, 1]�, respectively, such that

ϕ(n) ↑ ϕ as n ↑ ∞. (3.49)

Then X (n),X may be defined on the same probablity space such that

X (n)
t (i) ↑ Xt (i) ∀i ∈ �, t ≥ 0 as n ↑ ∞ a.s. (3.50)

Proof. Let X (n),X be solutions of the SDE (1.3) relative to the same system of
Brownian motions. By Corollary 19, X (n) ≤ X (n+1) and X (n) ≤ X for all n. Write
�
(n)
t := Xt − X (n)

t and set τ (n)ε := inf{t ≥ 0 : �(n)t ≥ ε}. A calculation as in the
proof of Lemma 18 shows that

d‖�(n)t ‖γ ≤ (K + b)‖�(n)t ‖dt + martingale terms. (3.51)

It follows that
E

[‖�(n)
t∧τε(n)‖γ

] ≤ ‖ϕ − ϕ(n)‖γ e(K+b)t . (3.52)

Now εP [τ (n)ε ≤ t] ≤ ‖ϕ − ϕ(n)‖γ e(K+b)t from which we conclude that τ (n)ε ↑ ∞
as n ↑ ∞ for every ε > 0. ��

4. Duality

4.1. Duality and self-duality

Proof of Theorem 1(a). We first prove the statement for finite x. We apply Theo-
rem 7. Our duality function is

�(x, φ) := (1 − φ)x (x ∈ N (�), φ ∈ [0, 1]�). (4.1)

We need to check that the right-hand side in (2.5) is zero, i.e., that

G�(·, φ)(x) = G†�(x, ·)(φ) (φ ∈ [0, 1]�, x ∈ N (�)), (4.2)

where G be the generator of the (a, b, c, d)-braco-process, defined in (1.1), and
G† is the generator of the (a†, b, c, d)-resem-process, defined in (3.37). Note that
since x is finite, �(x, ·) ∈ C2

fin([0, 1]�). We check that

G�(·, φ)(x) =
∑

ij

a(i, j)x(i){(1 − φ(j))− (1 − φ(i))}(1 − φ)x−δi

+b
∑

i

x(i){(1 − φ(i))− 1}(1 − φ)x

+c
∑

i

x(i)(x(i)− 1){1 − (1 − φ(i))}(1 − φ)x−δi
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+d
∑

i

x(i){1 − (1 − φ(i)}(1 − φ)x−δi

= −
∑

ij

a†(j, i)(φ(j)− φ(i))x(i)(1 − φ)x−δi

−b
∑

i

φ(i)(1 − φ(i))x(i)(1 − φ)x−δi

+c
∑

i

φ(i)(1 − φ(i))x(i)(x(i)− 1)(1 − φ)x−2δi

+d
∑

i

φ(i)x(i)(1 − φ)x−δi

= G†�(x, ·)(φ) (φ ∈ [0, 1]�, x ∈ N (�)). (4.3)

Set

�(x, φ) := G�(·, φ)(x) = G†�(x, ·)(φ) (φ ∈ [0, 1]�, x ∈ N (�)). (4.4)

It is not hard to see that there exists a constant K such that

|�(x, φ)| ≤ K
(

1 + |x|2
)

(φ ∈ [0, 1]�, x ∈ N (�)). (4.5)

Therefore, condition (2.4) is satisfied by (3.1).
To generalize the statement from finite x to general x ∈ Eγ (�), we apply

Lemma 16. Choose finite x(n) such that x(n) ↑ x and couple the (a, b, c, d)-braco-
processes X(n),X with initial conditions x(n), x, respectively, such that X(n) ↑ X.
Then, for each t ≥ 0 and φ ∈ [0, 1]�,

Eφ[(1 − Xt )x(n)] ↓ Eφ[(1 − Xt )x] as n ↑ ∞, (4.6)

and

E[(1 − φ)X
(n)
t ] ↓ E[(1 − φ)Xt ] as n ↑ ∞, (4.7)

where we used the continuity of the function x �→ (1−φ)x with respect to increas-
ing sequences. ��

Proof of Theorem 1(b). We first prove the statement under the additional assump-
tion that φ and ψ are summable. Recall that by Lemma 20, if X0 is summable then
Xt is summable for all t ≥ 0 a.s. Let S := {φ ∈ [0, 1]� : |φ| < ∞} denote the
space of summable states. We apply Theorem 7. Our duality function is

�(φ,ψ) := e− b
c
〈φ,ψ〉

(φ, ψ ∈ S). (4.8)

Let G,G† denote the generators of the (a, b, c, d)-resem-process and the (a†, b,

c, d)-resem-process, as in (3.37), respectively. We need to show that the right-hand
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side in (2.5) is zero, i.e., that G�(·, ψ)(φ) = G†�(φ, ·)(ψ). It is not hard to see
that �(·, ψ),�(φ, ·) ∈ Csum([0, 1]�) for each ψ, φ ∈ S. We calculate

G�(·, ψ)(φ) =
{ ∑

ij

a(j, i)(φ(j)− φ(i))(− b
c
)ψ(i)

+b
∑

i

φ(i)(1 − φ(i))(− b
c
)ψ(i)

+c
∑

i

φ(i)(1 − φ(i))(− b
c
)2ψ(i)2

−d
∑

i

φ(i)(− b
c
)ψ(i)

}
e− b

c
〈φ,ψ〉

= − b
c

{ ∑

ij

a(j, i)φ(j)ψ(i)−
( ∑

j

a(j, i)
) ∑

i

φ(i)ψ(i)

+ b
∑

i

φ(i)(1 − φ(i))ψ(i)(1 − ψ(i))

−d
∑

i

φ(i)ψ(i)
}
e− b

c
〈φ,ψ〉

= G†�(φ, ·)(ψ). (4.9)

It is not hard to see that there exists a constant K such that

|G�(·, ψ)(φ)| ≤ K|φ| |ψ | (φ, ψ ∈ S). (4.10)

Therefore, condition (2.4) is implied by Lemma 20, and Theorem 7 is applicable.
To generalize the result to general φ,ψ ∈ [0, 1]�, we apply Lemma 22. ��

4.2. Subduality

Fix constants β ∈ R, γ ≥ 0. Let M(�) := {φ ∈ [0,∞)� : |φ| < ∞} be the space
of finite measures on �, equipped with the topology of weak convergence, and let
Y be the Markov process in M(�) given by the unique pathwise solutions to the
SDE

dYt (i) =
∑

j

a(j, i)(Yt (j)− Yt (i)) dt + βYt (i) dt +
√

2γYt (i) dBt(i) (4.11)

(t ≥ 0, i ∈ �). Then Y is the well-known super random walk with underlying
motion a, growth parameter β and activity γ . One has [Daw93, Section 4.2]

Eφ
[
e−〈Yt , ψ〉] = e−〈φ,Utψ〉 (4.12)

for any φ ∈ M(�) and bounded nonnegativeψ : � → R, where ut = Utψ solves
the semilinear Cauchy problem

∂
∂t
ut (i) =

∑

j

a(j, i)(ut (j)− ut (i))+ βut (i)− γ ut (i)
2 (i ∈ �, t ≥ 0)

(4.13)
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with initial condition u0 = ψ . The semigroup (Ut )t≥0 acting on bounded nonneg-
ative functions ψ on � is called the log-Laplace semigroup of Y .

We will show that (a, b, c, d)-braco-process and the super random walk with
underlying motion a†, growth parameter b − d + c and activity c are related by
a duality formula with a nonnegative error term. In analogy with words such as
subharmonic and submartingale, we call this a subduality relation.

Proposition 23 (Subduality with a branching process). LetX be the (a, b, c, d)-
braco-process and let Y be the super random walk with underlying motion a†,
growth parameter b − d + c and activity c. Then

Ex
[
e−〈φ,Xt 〉] ≥ Eφ

[
e−〈Yt , x〉] (x ∈ Eγ (�), φ ∈ M(�)). (4.14)

Proof. We first prove the statement for finite x. We apply Theorem 7 to X and Y
considered as processes in N (�) and M(�), respectively. The process Y solves
the martingale problem for the operator

Hf (φ) :=
∑

ij

a†(j, i)(φ(j)− φ(i)) ∂
∂φ(i)

f (φ)+ (b − d + c)
∑

i

φ(i) ∂
∂φ(i)

f (φ)

+c
∑

i

φ(i) ∂2

∂φ(i)2
f (φ) (φ ∈ [0, 1]�),

(4.15)
defined for functions φ in the space C2

fin,b[0,∞)� of bounded C2 functions on

[0,∞)� depending on finitely many coordinates. Our duality function is�(x, φ) :=
e−〈φ,x〉. We observe that �(x, ·) ∈ C2

fin,b[0,∞)� for all x ∈ N (�) and calculate

G�(·, φ)(x) =
{ ∑

ij

a(i, j)x(i)
(
eφ(i)−φ(j) − 1

)

+b
∑

i

x(i)
(
e−φ(i) − 1

)

+c
∑

i

x(i)(x(i)− 1)
(
eφ(i) − 1

)

+d
∑

i

x(i)
(
eφ(i) − 1

)}
e−〈φ, x〉, (4.16)

and

H�(x, ·)(φ)=
{ ∑

ij

a†(j, i)x(i)(φ(i)− φ(j))− (b − d + c)x(i)φ(i)

+ c
∑

i

x(i)2φ(i)
}
e−〈φ, x〉 (4.17)

(x ∈ N (�), φ ∈ M(�)). It is not hard to see that there exists a constant K such
that

|G�(·, φ)(x)| ≤ K|x|2 and |H�(x, ·)(φ)| ≤ K|x|2 |φ|. (4.18)
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(x ∈ N (�), φ ∈ M(�)) and therefore condition (2.4) is implied by (3.1) and the
elementary estimate E[|Yt |] ≤ e(b−d+c)t |φ|. One has

G�(·, φ)(x)− H�(x, ·)(φ) =
{ ∑

ij

a(i, j)x(i)
(
eφ(i)−φ(j) − 1 − (φ(i)− φ(j))

)

+b
∑

i

x(i)
(
e−φ(i) − 1 + φ(i)

)

+c
∑

i

x(i)(x(i)− 1)
(
eφ(i) − 1 − φ(i)

)

+d
∑

i

x(i)
(
eφ(i) − 1 − φ(i)

)}
e−〈φ, x〉

≥ 0, (4.19)

and therefore, for finite x, (4.14) is implied by Theorem 7. The general case follows
by approximation, using Lemma 16. ��

5. The Maximal Processes

5.1. The maximal branching-coalescing process

Using Proposition 23 we can now prove Theorem 2.

Proof of Theorem 2. Choose x(n) ∈ Eγ (�) such that x(n)(i) ↑ ∞ for all i ∈ �. By
Lemma 16, the (a, b, c, d)-braco processes X(n) started in x(n), respectively, can
be coupled such that X(n)t ≤ X

(n+1)
t for each t ≥ 0. Define X(∞) = (X

(∞)
t )t≥0

as the N
�

-valued process that is the pointwise increasing limit of the X(n). By
Proposition 23 and (4.12),

E
[
1 − e−〈εδi, X(n)t 〉] ≤ 1 − e−〈εδi,Ut x(n)〉 (t, ε ≥ 0, i ∈ �). (5.1)

where (Ut )t≥0 is the log-Laplace semigroup of the super random walk with under-
lying motion a†, growth parameter r := b − d + c and activity c. It follows that

E[X(n)t (i)] = lim
ε↓0

ε−1E
[
1 − e−〈εδi, X(n)t 〉]

≤ lim
ε↓0

ε−1
(
1 − e−〈εδi,Ut x(n)〉) = Ut x(n)(i)

(5.2)

(t ≥ 0, i ∈ �). Using the explicit solution of (4.13) for constant initial conditions,
it is easy to see that Ut x(n) ↑ Ut∞, where

Ut∞ :=
{

r
c(1−e−rt ) if r �= 0,

1
ct

if r = 0.
(5.3)

(See, for example, [FS03a, formula (32)].) Letting n ↑ ∞ in (5.2) we arrive at
Theorem 2 (b). Moreover, we see that

E
[‖X(∞)

t (i)‖γ
] ≤ Ut∞

∑

i

γi < ∞ (t > 0), (5.4)
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and therefore X(∞)
t ∈ Eγ (�) a.s. for each t > 0. Part (a) of the theorem now

follows from Lemma 16. Using Theorem 1 (a) and the continuity of the function
x �→ (1 − φ)x with respect to increasing sequences, reasoning as in (1.28), we see
that

P [Thinφ(X
(∞)
t ) = 0] = Pφ[X †

t = 0] (φ ∈ [0, 1]�, t ≥ 0), (5.5)

where X † denotes the (a†, b, c, d)-resem-process. Since formula (5.5) determines
the distribution of X(∞)

t uniquely, the law of X(∞)
t does not depend on the choice

of the x(n) ↑ ∞ (t ≥ 0). This completes the proof of part (c) of the theorem.
To prove part (d), fix 0 ≤ s ≤ t . Choose yn ∈ Eγ (�), yn(i) ↑ ∞ ∀i ∈ �

and let X̃(n) be the (a, b, c, d)-braco-process started in X̃(n)0 := X
(∞)
t−s ∨ yn. Then

X̃
(n)
0 ≥ X

(∞)
t−s and therefore, by Lemma 9, X̃(n)s and X(∞)

t may be coupled such

that X̃(n)s ≥ X
(∞)
t . By part (c) of the theorem, X̃(n)s and X(∞)

s may be coupled
such that X̃(n)s ↑ X

(∞)
s and therefore X(∞)

s and X(∞)
t may be coupled such that

X
(∞)
s ≥ X

(∞)
t .

It follows that L(X(∞)
t ) ↓ ν for some probability measure ν on Eγ (�). Set

ρ := L(X(∞)
1 ) and let (St )t≥0 denote the semigroup of the (a, b, c, d)-braco-pro-

cess. Recall the definition of CLip,b(Eγ (�)) above (3.20). One has
∫

ν(dx)f (x) = lim
t→∞

∫

ρ(dx)Stf (x) (5.6)

for every f ∈ CLip,b(Eγ (�)). Therefore, since St maps CLip, b(Eγ (�)) into itself,
∫

ν(dx)Ssf (x) = lim
t→∞

∫

ρ(dx)StSsf (x) =
∫

ν(dx)f (x) (s ≥ 0), (5.7)

for every f ∈ CLip, b(Eγ (�)), which shows that ν is an invariant measure. If ν is

another invariant measure, then L(X(∞)
t ) ≥ ν for all t ≥ 0. Letting t → ∞, we

see that ν ≥ ν, proving part (e) of the theorem. Part (f) has already been proved in
the introduction. ��

5.2. The maximal resampling-selection process

The proof of Theorem 3 (a)–(c) is similar to the proof of Theorem 2, but easier.
Recall that Theorem 3 (d) is proved in Section 1.5.

Proof of Theorem 3(a)–(c). Part (a) can be proved in the same way asTheorem 2 (d),
using Lemma 22. The proof of part (b) goes analogue to the proof of Theorem 2 (e).
To see why (1.30) holds, note that for any φ ∈ [0, 1]�, by Theorem 1 (a),

∫

µ(dφ)(1 − φ)x = lim
t→∞P

1[ThinXt
(x) = 0] = lim

t→∞P
x[Thin1(X

†
t ) = 0].

(5.8)
To complete the proof of part (c) we must show that µ is nontrivial if and only if
the (a†, b, c, d)-process survives. Using subadditivity (Lemma 10) it is easy to see
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that the (a†, b, c, d)-process survives if and only if P δi [X†
t �= 0 ∀t ≥ 0] > 0 for

some i ∈ �. Formula (1.30) implies that
∫
µ(dφ)φ(i) = P δi [X†

t �= 0 ∀t ≥ 0],
which shows that µ = δ0 if and only if the (a†, b, c, d)-process survives. If µ �= δ0
then the measure µ conditioned on {φ : φ �= 0} is an invariant measure of the
(a, b, c, d)-resem-process that is stochastically larger than µ. By part (b), this con-
ditioned measure is µ itself, thus µ({0}) = 0, i.e., µ is nontrivial. ��

6. Convergence to the Upper Invariant Measure

6.1. Extinction versus unbounded growth

In this section we prove Lemma 5. It has already been proved in Section 1.5 that

e−
b
c
|Xt | is a submartingale. Therefore, if b > 0, then |Xt | converges a.s. to a limit

in [0,∞]. If b = 0 then it is easy to see that |Xt | is a nonnegative supermartingale
and therefore also in this case |Xt | converges a.s. Thus, all we have to do is to show
that limt→∞ |Xt | takes values in {0,∞} a.s. (Proposition 25 below), and that X
gets extinct in finite time if the limit is zero (Lemma 24). Throughout this section,
c > 0 and X is the (a, b, c, d)-resem-process starting in an initial state φ ∈ [0, 1]�

with |φ| < ∞.

Lemma 24 (Finite time extinction). One has Xt = 0 for some t ≥ 0 a.s. on the
event limt→∞ |Xt | = 0.

Proof. Choose x(n) ∈ Eγ (�) such that x(n)(i) ↑ ∞ for all i ∈ �. LetX(n)† denote
the (a†, b, c, d)-braco-process started in x(n) and let X(∞)† denote the maximal
(a†, b, c, d)-braco-process. By Theorem 1 (a) and Theorem 2 (b),

Pφ[Xt �= 0] = lim
n↑∞

Pφ[ThinXt
(x(n)) �= 0] = lim

n↑∞
P [Thinφ(X

(n)†
t ) �= 0]

= P [Thinφ(X
(∞)†
t ) �= 0] ≤ E

[|Thinφ(X
(∞)†
t )|] = 〈φ,E[X(∞)†

t ]〉 ≤ |φ|Ut∞,

(6.1)
where Ut∞ is the function on the right-hand side in (1.23). Choose ε > 0 and
t0 > 0 such that εUt0∞ ≤ 1

2 . Let (Ft )t≥0 denote the filtration generated by X . By
(6.1),

1
2 1{|Xt | ≤ ε} ≤ P [Xt+t0 = 0|Ft ] ≤ P [∃s ≥ 0 s.t. Xs = 0|Ft ]. (6.2)

Now
1{lims→∞ Xs = 0} ≤ lim inf

t→∞ 1{|Xt | ≤ ε}, (6.3)

while

P [∃s ≥ 0 s.t. Xs = 0|Ft ] → 1{∃s ≥ 0 s.t. Xs = 0} as t → ∞ a.s., (6.4)

by convergence of right-continuous martingales and the fact that the left-hand side
is right-continuous by a general property of strong Markov processes (see, for
example, [FS03a, Lemma A.1]). Letting t → ∞ in (6.2), using (6.3) and (6.4), we
find that 1

2 1{lims→∞ Xs=0} ≤ 1{∃s≥0 s.t. Xs=0} a.s. ��
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To finish this section, we need to prove:

Proposition 25 (Convergence to zero or infinity). Assume that� is infinite. Then
limt→∞ |Xt | ∈ {0,∞} a.s.

Since the proof of Proposition 25 is rather long we break it up into a number of
steps. At each step, we will skip the proof if it is obvious but tedious. Our first step
is:

Lemma 26 (Integrable fluctuations). One has
∫ ∞

0

∑

i

Xt (i)(1 − Xt (i)) dt < ∞ (6.5)

a.s. on the event limt→∞ |Xt | ∈ [0,∞).

Proof. For any ψ ∈ [0,∞)� with |ψ | < ∞ one has e−〈·,ψ〉 ∈ C2
sum([0, 1]�) and

(compare (4.1))

Ge−〈·, ψ〉(φ) =
{

−
∑

i

φ(i)
∑

j

a†(j, i)(ψ(j)− ψ(i))

+
∑

i

φ(i)(1 − φ(i))
(
cψ(i)2 − bψ(i)

)

+d
∑

i

φ(i)ψ(i)
}
e−〈φ,ψ〉. (6.6)

Since X solves the martingale problem for G,

E
[ ∫ t

0
Ge−〈·, ψ〉(Xs)ds

]
= E

[
e−〈Xt , ψ〉] − e−〈φ,ψ〉 (t ≥ 0). (6.7)

Choose λ > 0 such that cλ2 − bλ =: µ > 0 and ψn ∈ [0,∞)� with |ψn| <
∞ such that ψn ↑ λ. Then the bounded pointwise limit of the function i �→∑
j a

†(j, i)(ψn(j) − ψn(i)) is zero and therefore, taking the limit in (6.1), using
Lemma 20, we find that

E
[ ∫ t

0

∑

i

{
µXs(i)(1 − Xs(i))+ λdXs(i)

}
e−λ|Xs |ds

]

= E
[
e−λ|Xt |] − e−λ|ϕ|. (6.8)

Letting t ↑ ∞, using the fact that the right-hand side of (6.1) is bounded by one,
we see that

∫ ∞

0

∑

i

{
µXt (i)(1 − Xt (i))+ λdXt (i)

}
e−λ|Xt | dt < ∞ a.s., (6.9)

which implies (6.5). ��
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Lemma 27 (Process not started with only zeros and ones). For every 0 < ε < 1
4

there exists a δ, r > 0 such that

Pφ
[Xt (i) ∈ (ε, 1 − ε) ∀t ∈ [0, r]

] ≥ δ

(i ∈ �, φ ∈ [0, 1]�, φ(i) ∈ (2ε, 1 − 2ε)). (6.10)

Proof. Since supi
∑
j a(i, j) < ∞ and all the components of the (a, b, c, d)-

resem-process take values in [0, 1], the maximal drift that the i-th component
Xt (i) can experience (both in the positive and negative direction) can be uniformly
bounded. Now the proof of (27) is just a standard calculation, which we skip. ��
Lemma 28 (Uniform convergence to zero or one). Almost surely on the event
that limt→∞ |Xt | ∈ [0,∞), there exists a set � ⊂ � such that

lim
t→∞ inf

i∈�
Xt (i) = 1 and lim

t→∞ sup
i∈�\�

Xt (i) = 0. (6.11)

Proof. Imagine that the statement does not hold. Then, by the continuity of sample
paths, with positive probability limt→∞ |Xt | ∈ [0,∞)while there exists 0 < ε < 1

4
such that for every T > 0 there exists t ≥ T and i ∈ � with Xt (i) ∈ (2ε, 1 − 2ε).
Using Lemma 27 and the strong Markov property, it is then not hard to check that
with positive probability limt→∞ |Xt | ∈ [0,∞) while there exist infinitely many
disjoint time intervals [tk, tk + r] and points ik ∈ � such that Xt (ik) ∈ (ε, 1 − ε)

for all t ∈ [tk, tk + r]. This contradicts Lemma 26. ��
Lemma 29 (Convergence to one on a finite nonempty set). Almost surely on the
event limt→∞ |Xt | ∈ (0,∞), the set � from Lemma 28 is finite and nonempty.

Proof. It is clear that� is finite a.s. on the event limt→∞ |Xt | < ∞. Now imagine
that � is empty. Then, a.s. on the event limt→∞ |Xt | > 0, there exists a random
time T such that Xt (i) ≤ 1

2 for all t ≥ T and i ∈ �. Since z(1 − z) ≥ 1
2z on [0, 1

2 ],
it follows that a.s. on the event limt→∞ |Xt | > 0,

∫ ∞

T

∑

i

Xt (i)(1 − Xt (i))dt ≥ 1

2

∫ ∞

T

|Xt | = ∞. (6.12)

We arrive at a contradiction with Lemma 26. ��
Proof of Proposition 25. Let � be the random set from Lemma 28. We will show
that � = � a.s. on the event limt→∞ |Xt | ∈ (0,∞). In particular, by Lemma 29,
if� is infinite this implies that the event limt→∞ |Xt | ∈ (0,∞) has zero probabil-
ity. Assume that with positive probability limt→∞ |Xt | ∈ (0,∞) and � �= �. By
Lemma 29,� is nonempty, and therefore by irreducibility there exist i ∈ �\� and
j ∈ � such that a(i, j) > 0 or a(j, i) > 0. If a(i, j) > 0 then by the fact that the
counting measure is an invariant measure for the Markov process with jump rates
a and by the finiteness of �, there must also be an i′ ∈ �\� and j ′ ∈ � such that
a(j ′, i′) > 0. Thus, there exist i, j ∈ � such that a(j, i) > 0 and with positive
probability limt→∞ Xt (i) = 0, and limt→∞ Xt (j) = 1. It is not hard to see that
this violates the evolution in (1.3). (We skip the details.) ��
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6.2. Convergence to the upper invariant measure

In this section we complete the proof of Theorem 4, started in Section 1.5, by prov-
ing Lemma 6. Throughout this section, (�, a) is infinite and homogeneous and G
is a transitive subgroup of Aut(�, a). We fix a reference point 0 ∈ �. We start with
two preparatory lemmas.

Lemma 30 (Sparse thinning functions). Assume that φn ∈ [0, 1]�, |φn| → ∞.
Let � ⊂ � be finite with 0 ∈ �. Then it is possible to choose constants λn → ∞,
finitely supported probability distributions πn on�, and {gi}i∈supp(πn) with gi ∈ G
and gi(0) = i such that the images {gi(�)}i∈supp(πn) are disjoint, and such that
λnπn ≤ φn.

Proof. Choose (gi)i∈� with gi ∈ G such that gi(0) = i. Let (ξ s
t )t≥0 be the random

walk on � that jumps from i to j with the symmetrized jump rates as(i, j) =
a(i, j) + a†(i, j). By irreducibility and symmetry, P i[ξ s

t = j ] > 0 for all t >
0, i, j ∈ �. Put

�εi := {j ∈ � : P i[ξ s
1 = j ] ≥ ε} (i ∈ �). (6.13)

We can choose ε > 0 small enough such that

j �∈ �εi implies gi(�) ∩ gj (�) = ∅ (i, j ∈ �). (6.14)

To see this, set δ := mink∈� P 0[ξ s
1
2

= k] and put ε := δ2. Imagine that ∃k ∈
gi(�) ∩ gj (�). Then P i[ξ s

1 = j ] ≥ P i[ξ s
1
2

= k]P k[ξ s
1
2

= j ] ≥ δ2 = ε by the

symmetry of the random walk and homogeneity, and therefore j ∈ �εi . Now choose
inductively i1, i2, . . . ∈ � such that

φn assumes its maximum over �\
k⋃

l=1

�εil in ik+1. (6.15)

Then gi1(�), gi2(�), . . . are disjoint by (6.14). Since K := |�εi | is finite and does
not depend on i,

∞∑

l=1

φn(il) ≥ |φn|
K
, (6.16)

and we can choose kn such that

λn :=
kn∑

l=1

φn(il) −→
n→∞ ∞. (6.17)

Setting

πn := 1

λn
φn1{i1,...,ikn } (6.18)

yields λn and πn with the desired properties. ��
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Let (ξt )t≥0 and (ξ†
t )t≥0 denote the random walks on � that jump from i to j

with rates a(i, j) and a†(i, j), respectively. Then, for any � ⊂ �, the sets

R� : = {i ∈ � : P i[ξt ∈ �] > 0} and R†� :

= {i ∈ � : P i[ξ†
t ∈ �] > 0} (t > 0) (6.19)

of points from which ξ and ξ† can enter � do not depend on t > 0. Indeed

R� = {
i : ∃n ≥ 0, i0, . . . , in s.t. i0 = i, in ∈ �, a(il−1, il) > 0 ∀l = 1, . . . , n

}

(6.20)
and similarly for R†�. In our next lemma, for x ∈ N

� and � ⊂ � we let x|� :=
(xi)i∈� denote the restriction of x to �.

Lemma 31 (Points from which 0 can be reached). If µ is aG-homogeneous and
nontrivial probability measure on N

�, then

µ
({x : x|R{0} = 0}) = 0. (6.21)

Proof. Let Y be a N
�-valued random variable with law µ. We will show that for

any � ⊂ �,
P

[
Y |R†R� = 0

] = P
[
Y |R� = 0

]
. (6.22)

Assume that (6.22) does not hold. Then there exists an i ∈ R†R�\R� such that
with positive probability Y (i) �= 0 and Y |R� = 0. Since the random walk (ξ†

t )t≥0
cannot escape from R� this implies that for any t > 0

P i
[
Y (ξ

†
0 ) �= 0, Y (ξ†

s ) = 0 ∀s ≥ t
]
> 0, (6.23)

which contradicts the fact that (Y (ξ†
t ))t≥0 is stationary. This proves (6.22). Contin-

uing this process, we see that

P
[
Y |R{0} = 0

] = P
[
Y |R†R{0} = 0

] = P
[
Y |RR†R{0} = 0

] = · · · (6.24)

By irreducibility, the sets R{0}, R†R{0}, RR†R{0}, . . . increase to �, and there-
fore, since µ is nontrivial,

P
[
Y |R{0} = 0

] = P
[
Y |� = 0

] = 0. (6.25)

��
Proof of Lemma 6. For any finite set� ⊂ �, letX� denote the (a, b, c, d)-braco-
process with immediate killing outside �. Thus, X�t (i) := 0 for all i ∈ �\� and
t > 0 and (X�t (i))i∈�, t≥0 is the Markov process in N

� with generator G� given
by (compare (1.1))

G�f (x) : =
∑

i,j∈�
a(i, j)x(i){f (x + δj − δi)− f (x)}

+
∑

i∈�,j∈�\�
a(i, j)x(i){f (x − δi)− f (x)}
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+b
∑

i∈�
x(i){f (x + δi)− f (x)}

+c
∑

i∈�
x(i)(x(i)− 1){f (x − δi)− f (x)}

+d
∑

i∈�
x(i){f (x − δi)− f (x)}. (6.26)

It is not hard to see that if �1, . . . , �n are disjoint finite sets, then it is possible to
couple the processes X and X�1 , . . . , X�n in such a way that

Xt ≥
n∑

i=1

X
�i
t (t ≥ 0) (6.27)

and the (X�i )i=1,...,n are independent.
Let X denote the (a, b, c, d)-braco-process and assume that φn ∈ [0, 1]� sat-

isfy |φn| → ∞. Fix t > 0. Assume that � ⊂ � is a finite set such that 0 ∈ �

and
x|� �= 0 ⇒ Px[X�t (0) > 0] > 0. (6.28)

Choose λn, πn, and {gi}i∈supp(πn) as in Lemma 30. Then, for deterministic x ∈
Eγ (�), we can estimate

Px
[
Thinφn(Xt ) = 0

] ≤Px[Thinλnπn(Xt ) = 0
]

≤
∏

i∈supp(πn)

P x
[
Thinλnπn(i)(X

gi(�)
t (i)) = 0

]

≤
∏

i∈supp(πn)

P
T
g
−1
i

x[
e−λnπn(i)X�t (i)]

≤
∏

i∈supp(πn)

P
T
g
−1
i

x[
e−X�t (i)]λnπn(i),

(6.29)

where the T
g−1
i

are shift operators as in (1.17) and we have used that P [Thinφ(x) =
0] = E[(1 − φ)x] = E[e〈log(1−φ),x〉] ≤ E[e−〈φ,x〉] for any φ ∈ [0, 1]�, x ∈ N

�.
If L(X0) is G-homogeneous, then by (6.29) and Hölder’s inequality,

P
[
Thinφn(Xt ) = 0

] ≤
∫

P [X0 ∈ dx]
∏

i∈supp(πn)

P
T
g
−1
i

x[
e−X�t (i)]λnπn(i)

≤
∏

i∈supp(πn)

( ∫

P [X0 ∈ dx]P
T
g
−1
i

x[
e−X�t (i)]λn

)πn(i)

=
∫

P [X0 ∈ dx]Px
[
e−X�t (0)]λn,

(6.30)
and therefore, by (6.28) and the fact that λn → ∞,

lim sup
n→∞

P
[
Thinφn(Xt ) = 0

] ≤ P
[
X0|� = 0

]
. (6.31)
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Put

�k :=
k⋃

n=0

{
i : ∃i0, . . . , in s.t. i0 = i, in = 0, a(il−1, il) >

1
k

∀l = 1, . . . , n
}
.

(6.32)
Then the �k satisfy (6.28) and �k ↑ R{0} as k ↑ ∞, where R{0} is defined in
(6.20). Therefore, inserting � = �k in (6.31) and taking the limit k ↑ ∞, using
Lemma 31, we arrive at (1.34). ��
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